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The Computational and Neural Basis of Rhythmic Timing in
Medial Premotor Cortex
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The neural underpinnings of rhythmic behavior, including music and dance, have been studied using the synchronization-continuation
task (SCT), where subjects initially tap in synchrony with an isochronous metronome and then keep tapping at a similar rate via an
internal beat mechanism. Here, we provide behavioral and neural evidence that supports a resetting drift-diffusion model (DDM) during
SCT. Behaviorally, we show the model replicates the linear relation between the mean and standard-deviation of the intervals produced
by monkeys in SCT. We then show that neural populations in the medial premotor cortex (MPC) contain an accurate trial-by-trial
representation of elapsed-time between taps. Interestingly, the autocorrelation structure of the elapsed-time representation is consistent
with a DDM. These results indicate that MPC has an orderly representation of time with features characteristic of concatenated DDMs and
that this population signal can be used to orchestrate the rhythmic structure of the internally timed elements of SCT.
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Introduction
The ability to extract the regular pulse or beat in music and to
respond in synchrony to the pulse is called beat synchronization
and is a natural human behavior exhibited during musical en-
semble coordination and dancing (Large and Palmer, 2002; Mer-
chant et al., 2015a). Human subjects can also keep an internal
beat without external cues, which is a skill commonly used in
musical soloists (Wing, 2002; Zarco et al., 2009). These abilities
are a form of interval timing on time scales of hundreds of milli-

seconds to a few seconds. Arguably, human beat synchronization
has evolved gradually across the primate order (Merchant and
Honing, 2013; Mendoza and Merchant, 2014; Patel, 2014).

We have been studying the neural correlates of these processes
using the synchronization-continuation task (SCT). In the SCT,
subjects first respond in synchrony with a visual or auditory met-
ronome and then continue, in the absence of the metronome, to
produce the same interval. Functional imaging studies during
this task have shown consistent activation in a set of structures,
including the supplementary motor and presupplementary mo-
tor areas [that constitute the medial premotor cortex (MPC)], the
putamen, the globus pallidus, and the motor thalamus (Grahn
and Brett, 2007; Kung et al., 2013; Merchant et al., 2015a). The
MPC, however, is crucially involved in maintaining an internal
representation of beat intervals, because this area shows a larger
activation during the continuation than the synchronization
phase (Rao et al., 1997; Lewis et al., 2004), and patients with SMA
lesions show a selective deficit in performing the continuation
but not the synchronization phase (Halsband et al., 1993). Neu-
rophysiological studies in primates have shown diverse encoding
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Significance Statement

The present study used behavioral data, ensemble recordings from medial premotor cortex (MPC) in macaque monkeys, and
computational modeling, to establish evidence in favor of a class of drift-diffusion models of rhythmic timing during a
synchronization-continuation tapping task (SCT). The linear relation between the mean and standard-deviation of the intervals
produced by monkeys in SCT is replicated by the model. Populations of MPC cells faithfully represent the elapsed time between
taps, and there is significant trial-by-trial relation between decoded times and the timing behavior of the monkeys. Notably, the
neural decoding properties, including its autocorrelation structure are consistent with a set of drift-diffusion models that are
arranged sequentially and that are resetting in each SCT tap.
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of elapsed time, including ramping activity during the SCT (Mer-
chant et al., 2011). In addition, MPC cells are tuned to specific
durations and serial order elements of the task (Merchant et al.,
2013a), and small populations of tuned cells are activated in rapid
succession within (Crowe et al., 2014) and across (Merchant et
al., 2015b) each produced interval in the sequence of sensory-
cued and internally driven rhythmic movements.

Although these results suggest an organized representation of
temporal intervals in the MPC, the computational mechanism
that gives rise to this representation has not been examined.
There is, however, a large and well developed literature on com-
putational models of interval timing (Schöner, 2002; Hass and
Durstewitz, 2016). Several of these models are biologically plau-
sible and can be used to make predictions about the neural rep-
resentation of elapsed time. Here, we implement a previously
developed drift-diffusion model (DDM; Simen et al., 2011,
2016), and examine detailed behavioral and neural correlates of
this model. We find substantial evidence in the rhythmic tapping
behavior of the monkeys and in the MPC population code that
are consistent with the predictions of the DDM.

Materials and Methods
Subjects. All the animal care, housing, and experimental procedures were
approved by the National University of Mexico Institutional Animal
Care and Use Committee and strictly conformed to the principles out-
lined in the Guide for Care and Use of Laboratory Animals (NIH, publi-
cation number 85-23, revised 1985). The two monkeys (Macaca mulatta;
both males, 5–7 kg BW) were monitored daily by the researchers and the
animal care staff, and every second day from the veterinarian, to check
the conditions of health and welfare. To ameliorate their condition of life
we routinely introduced in the home cage (1.3 m 3) environment toys
(often containing items of food that they liked) to promote their explor-
atory behavior. The researcher that tested the animals spent half an hour
per day interacting with the monkeys directly, giving for example new
objects to manipulate. All surgery was performed under Sevoflurane (1–
2%) gas anesthesia, and every effort was made to minimize suffering.

Synchronization-continuation task. The SCT has been described in de-
tail previously (Zarco et al., 2009; Merchant et al., 2011). On each trial,
the monkey tapped a button seven times in succession (producing 6
intervals) with the goal of maintaining a constant inter-tap interval du-
ration across all taps. In this paper, we refer to the time period between
taps as “intervals” and to the amount of time between taps as “duration”.
The first four taps were made synchronously with a repetitive cue stim-
ulus (either a visual stimulus presented on a computer monitor or an
auditory tone on speakers in front of the animal). The monkey, then, had
to tap the button three more times with the same inter-tap duration as
instructed by the cues without the assistance of the sensory metronome
(Fig. 1A). Five different instructed durations were used: 450, 550, 650,
850, and 1000 ms. During the recording of each group of cells (one “set”),
the monkey performed five repetitions of each duration, for a total of 25
trials, with durations randomly ordered within each repetition. Trials
were separated by an intertrial time between 1.2 and 4 s.

Serial reaction time task. This task was used as a control to determine
the neural responses associated with sensorimotor and sequential behav-
iors (Fig. 2). Monkeys were required to push a button each time a stim-
ulus was presented, but in this case the interstimulus interval was random
(600 –1400 ms), precluding the explicit temporalization of motor re-
sponses. Monkeys received a reward if the response time to each of five
stimuli was within a 200 –1000 ms window. The intertrial interval was
also variable (1.2– 4 s). Brief auditory (33 ms, 500 Hz, 65 dB) or visual
(4 cm side red square, 33 ms) stimuli were used, and 10 repetitions were
collected.

Neural recordings. The extracellular activity of single neurons in the
medial premotor areas was recorded using a system with seven indepen-
dently movable microelectrodes (1–3 M�, Uwe Thomas Recording). All
the isolated neurons were recorded regardless of their activity during the
task, and the recording sites changed from session to session. At each site,

raw extracellular membrane potentials were sampled at 40 kHz. Single-
unit activity was extracted from these records using the Plexon off-line
sorter. Structural magnetic resonance imaging (MRI) was used to local-
ize the recording sites (2). The recording positions based on MRI recon-
structions were reported by Merchant et al. (2015b, their Fig. 3A). A total
of 253 recording sessions (174 monkey1 and 79 monkey2) were per-
formed during task performance. Of these, 189 had five or more cells
simultaneously recorded and were analyzed further. It is important to
clarify that a partial set of these neural recordings were analyzed in pre-
vious studies using different analytical tools (Merchant et al., 2011,
2013b).

Decoding elapsed time within an inter-tap interval. We used a pattern
classification analysis (“classify” function in the MATLAB Statistical
Toolbox; Mathworks) to decode the elapsed time from the previous to
the next tap for each produced interval (Crowe et al., 2014). First, we
divided each produced interval in 50 ms bins (Fig. 3). This meant that if
the monkey produced a perfect instructed 450 interval, the total number
of bins for this interval would be 9 (450/50 � 9), the 550 ms instructed
interval would be 11 bins, and so on. Because monkeys actually produced
a range of intervals, the number of time bins in any particular produced
interval was usually more or less than if a perfect interval had been pro-
duced (Fig. 3A). We then calculated the discharge rate for the cells re-
corded simultaneously in a session within each 50 ms bin of a produced
interval, keeping this information independently for each of the six seri-
ally produced intervals (3 for synchronization and 3 for the continuation
phase), and each of the five instructed intervals. We used the pattern of
discharge rates of the cells during a specific produced interval to decode
the bin-by-bin sequence of durations, as follows. First, we organized the
neural data for each bin and trial into observations. Thus, the total num-
ber of observations corresponded to the total number of bins defined by
the duration of the produced intervals by the monkey during the five trial
repetitions. For example, for a perfect execution across trials for the
interval of 550 ms, the total number of observations correspond to 55 (11
bins � 5 repetitions; Fig. 3B). Using these observations, we determined
the degree to which neural activity represented the passage of time by
classifying each observation as one of the n time bins produced by the
monkey, based on the pattern of firing rates across the population of cells.
In this analysis, 4/5 of the observations were used as training data to
obtain an average pattern of activity across the neural population for each
time bin. The activity pattern recorded on each of the remaining 1/5 of
observations were used as the testing observations, and were compared
with the average patterns. The result of this comparison was the classifi-
cation of each testing observation as the time bin with the closest match-
ing average pattern. This process was repeated four more times, namely,
all the bins across repetitions were used as testing observations (Fig. 3B).
Consequently, all the classified bins were kept as decoded durations as-
sociated to a true bin in a produced interval.

Bimodal model of decoded times. As shown in the results, we observed
that the decoded times in the shortest and longest bin durations showed
a bimodal behavior. Initially, for each bin we performed the Hartigan’s
dip statistic (HDS) to distinguish whether the decoded times were uni or
bimodal (Hartigan and Hartigan, 1985). For the bins with a significant
HDS (values �0.05), the decoding was considered bimodal and the next
step was to apply the following mixture bimodal model to the decoded
times:

f� x� � �N� x, �1, �1� � �1 � �� N� x, �2, �2�,

where �1 and �2, and �1 and �2 are the means and SDs of the two modes,
respectively, and � is the mixing coefficient. When the parameter � � 0
or � � 1 the model is reduced to a single Gaussian model, whereas �
values close to 1 indicate that the first mode (�1 and �1) has a larger
weight in the distribution, and � values close to 0 indicate that the second
mode (�2 and �2) has a large weight in the distribution. The parameters
of the model were obtained using the genetic algorithm in the MATLAB
function ga.m. In contrast, when the HDS was not significant a unimodal
model was fitted to the decoded times.

Diffusion model. We used a stochastic accumulator or DDM to account
for the mean-variance relationship in the produces intervals. We as-
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sumed that the time estimation was consistent with a stochastic differen-
tial equation given by the following:

dX � vdt � cdW.

We further assumed that when the integrated particle position, X, hits a
threshold, a, a response is executed. Longer intervals can be produced by
smaller drift rates, v, and shorter intervals by larger drift rates. Various
forms of this model have been developed in detail by several groups, so
we will only give the relevant results here (Simen et al., 2011, 2016). If the
DDM is assumed to arise through the integration of an excitatory and
inhibitory Poisson process, referred to as an opponent Poisson process,
the drift rate is given by the following:

v � �e � �i � �e�1 � ��,

where, �e is the excitatory rate and �i is the inhibitory rate. We can further
introduce a parameter � that controls the ratio of excitatory to inhibitory
input, �i � � �e. The diffusion rate is then:

c � ��e�1 � ��.

If we also define m � ��1 � ��/�1 � ��, the first three central mo-
ments of the reaction times (first passage times) are as follows:

Figure 1. A drift-diffusion model explains the rhythmic timing behavior of the monkeys. A, SCT. Monkeys were required to push a button (Responses, black line) each time stimuli with a constant
interstimulus interval (stimuli, gray line) were presented, which resulted in a stimulus–movement cycle. After four consecutive synchronized movements, the stimuli stopped, and the monkeys
continued tapping with a similar interval for three additional intervals. The instructed intervals, defined by brief auditory or visual stimuli, were 450, 550, 650, 850, and 1000 ms, and were chosen
pseudorandomly within a repetition. B, Constant error (produced-instructed interval) of the animals during synchronization (blue) and continuation (red) phases of SCT as a function of the instructed
duration. Monkeys slightly underestimated the interval durations during the continuation. C, The temporal variability of the monkeys increased as a function of instructed interval during both phases
of SCT, with a larger slope in the continuation condition. D, Example diffusion trajectories for two different durations (450 and 850 ms) and on top the resulting distributions of produced intervals.
E, Relationship between mean and SD of the produced interval of a DDM (red line) that is compared with the monkey’s behavior during the continuation phase of the SCT (black line).

Figure 2. SRTT. Monkeys required to push a button each time a stimulus was presented, but
in this case the interstimulus interval was random (600 –1400 ms), precluding the explicit
temporalization of motor responses. Five stimulus–response cycles were collected in a se-
quence. Monkeys received a reward if the response time to each of five stimuli was within a
200 –1000 ms window.
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For this DDM, the autocorrelation function for the particle X is given by
(Papoulis, 1991):

Rx�t1, t2� � �2 min�t1, t2�.

When this was fit to the autocorrelation function of the neural represen-
tation of the elapsed time we performed a linear regression given by the
following:

Figure 3. Illustration of the decoding analysis. A, Each trial consisted of six produced inter-tap intervals (S1–C3). Monkeys performed five trials in each of five instructed durations. To
decode elapsed time during the inter-tap interval, we divided each interval into 50 ms bins. This meant that if the monkey produced a perfect instructed 550 interval, the total number
of bins for this interval would be 11 (550/50 � 11). We then calculated the discharge rate for the cells recorded simultaneously in a session within each 50 ms bin of a produced interval,
keeping this information independently for each of the six serially produced intervals, and each of the five instructed intervals. Thus, we organized the neural data for each bin and trial
into observations. The total number of observations corresponded to the total number of bins defined by the duration of the produced intervals by the monkey during the five trial
repetitions. B, For a perfect execution across trials for the interval of 550 ms, the total number of observations correspond to 55 (11 bins � 5 repetitions). We determined the degree to
which neural activity represented the passage of time by classifying each observation as one of the n time bins produced by the monkey, based on the pattern of firing rates across the
population of cells. In this analysis, 4/5 of the observations were used as training data to obtain an average pattern of activity across the neural population for each time bin. The activity
pattern recorded on each of the remaining 1/5 of observations were used as the testing observations, and were compared with the average patterns. The result of this comparison was
the classification of each testing observation as the time bin with the closest matching average pattern. This process was repeated four more times, namely, the bins of all the repetitions
were used as testing observations. Consequently, all the classified bins were kept as decoded durations associated to a true bin in a produced interval.
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Rn�t1, t2� � �0 � �1Rx�t1, t2�,

where Rn is the neural autocorrelation function and Rx is the theoretical
autocorrelation function.

The DMM model was fit to the behavioral data by floating the thresh-
old, a and the ratio of excitatory to inhibitory input, �. The drift rate was
then defined by the relationship between the mean (given by the in-
structed interval) and the threshold and drift rate. The model, therefore,
had two parameters. The free parameters were fit by minimizing the
sum-of-squared error between the measured SD of the produced inter-
vals by the monkeys and the model’s predicted SD.

Results
We trained two monkeys in a version of the SCT where they
produced, by tapping on a push-button, three intervals in the
synchronization phase, during which they were responding to a
sensory stimulus, followed by three internally generated intervals
in the continuation phase (Fig. 1A). The monkeys were able to
accurately produce the instructed intervals (from 450 to 1000
ms), showing a constant error close to zero during synchroniza-
tion, and showing a small overestimation for the shortest interval
and an underestimation of �50 ms for the larger instructed in-
tervals during the continuation phase (Fig. 1B). Nevertheless, we
performed an ANOVA with the constant error as dependent vari-
able and the epoch and instructed interval as factors, and the
results showed no significant effects. In addition, the temporal
variability (inter-tap SD) increased approximately linearly as a
function of duration, with a larger slope in the continuation con-
dition (Fig. 1C). An ANOVA using the temporal variability as
dependent variable showed significant main effects for epoch
(F(20, 1) � 20.8, p � 0.0001) and instructed interval (F(20, 4) � 4.6,
p � 0.009), and a marginal effect for the epoch � interval inter-
action (F(20, 4) � 2.4, p � 0.08). The proportional relationship

between the mean and the SD of produced intervals is known as
the scalar property.

A diffusion model of the elapsed time computation
DDMs can be used to account for a large class of behavioral
phenomena where there is a relationship between response time
and response variability, including interval-timing behavior
(Schöner, 2002; Simen et al., 2011, 2016; Ratcliff, 1978; Roitman
and Shadlen, 2002; Wagenmakers et al., 2005). In a DDM, a series
of samples drawn from a (usually) stationary distribution are
integrated across time leading to a random walk trajectory (Fig.
1D). The mean of the distribution from which samples are drawn
is the drift rate, and the variance of the distribution is the diffu-
sion rate. The current value of the integrator is often thought of as
the location of a particle in space. When the particle crosses a
fixed boundary a behavior is executed. The time to reach the
boundary is known as the first passage time. When drift rates are
high the particle reaches the boundary quickly, and therefore an
action is produced quickly, whereas when drift rates are low the
particle reaches the boundary more slowly. Changes in the drift
rate can, therefore, be used to account for changes in the duration
of produced intervals (Fig. 1D).

Appropriately parameterized DDMs, that accumulate a dif-
ference of Poisson counts (see Materials and Methods), repro-
duce the scalar property of interval timing (Simen et al., 2011).
We found that the mean-SD relationship seen in the tapping
behavior of monkeys could be well approximated by the DDM
(Simen et al., 2011, 2016; Fig. 1E). In addition, the DDM was able
to approximately replicate the distribution of intervals produced
by the monkeys across the five instructed durations (Fig. 4). Fur-
ther, the ratio of the skew (i.e., third central moment) to the

Figure 4. Comparison between the produced intervals by the monkey and the DDM model. A, Distribution of the produced intervals by the two monkeys for the five instructed intervals (red line)
and the corresponding distribution of time estimates by the DDM (blue line). B, Coefficient of variation (CV) as a function of the instructed intervals of the monkeys’ produced intervals. C, Skew of
the distributions in A of the produced intervals by the monkeys as a function of the instructed intervals. D, Skew to CV ratio of the distributions in A produced intervals by the monkeys as a function
of the instructed intervals.
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coefficient of variation of the produced interval distributions
were between 2 and 3 for the longer intervals (Fig. 4C). This value
is close to the ratio of 3 predicted by the first passage time distri-
bution of the model Simen et al. (2011, 2016). Therefore, the
DDM reproduced the mean–SD relationship seen in many tim-
ing studies (Gibbon et al., 1997; Merchant et al., 2008), as well as
additional higher order statistics of the response time distribu-
tions. However, there is limited evidence that such a model de-
scribes the computational processes, at a neural level, that drives
rhythmic behavior. We therefore examined several facets of the
neural representation of time during rhythmic tapping in the
MPC to see if they were consistent with this DDM.

Neural representation of elapsed time
We began by building a linear decoding model that used neural
activity to estimate elapsed time between taps, on a moment by
moment basis. Presumably, such a representation would be used
by the animal to estimate when it should execute the next tap. The
model is based on the assumption that there will be a different
mean rate associated with each elapsed time. A ramping cell
would satisfy this assumption, as the rate increases monotonically
with elapsed time. However, cells that show decreasing activity
over time would also satisfy this assumption. And, at a popula-
tion level, cells with more complex response profiles including
increasing and then decreasing responses with elapsed time
would also contribute information relevant to encoding elapsed
time (Merchant et al., 2011; Perez et al., 2013; Latimer et al.,
2015). As neural representations are almost always nonlinear
functions of the underlying variable, we would not expect to find
a simple linear relationship between the variable of interest and
its neural representation (Meister et al., 2013; Rigotti et al., 2013;
Jazayeri and Shadlen, 2015). In fact, we have found a family of
time-modulated ramping cells, with complex response profiles as
a function of elapsed time (Fig. 5). However, ramping activity is
not a requirement for the model and it would not be expected.
The goal is to determine whether we can identify a representation
of the underlying computation, and the decoding model provides
the relevant neural information extracting tool for addressing
this question.

We found that 53 of 189 simultaneously recorded neural ensem-
bles showed a significant linear relation between the decoded values
and the elapsed time between taps on at least one of the six serial
order elements of the SCT (linear regression, p � 0.05). The cell
populations showed decoding preferences for individual instructed
intervals and serial order elements of the task (Fig. 6A), consistent
with previous analyses of temporal encoding in single cells (Mer-
chant et al., 2013b). Thus, individual ensembles did not tend to code
all the elements in the sequence. Rather they were specific to combi-
nations of serial-order elements and instructed durations. The entire
population, however, would contain a representation of elapsed
time, if it could be recorded simultaneously.

Decoded times and actual elapsed times were highly consistent
(Fig. 7A). Nevertheless, in the earlier time bins the decoded times
sometimes represented the end of the previous interval (high values
in early bins) and in the later bins the decoded times sometimes
represented the beginning of the next interval (low values). To char-
acterize this phenomenon, we used unsupervised learning to fit bi-
modal distributions to the decoded time distributions in each
elapsed time bin (Fig. 7B,C). To assess whether the distribution was
bimodal, we used Hartigan’s dip test (Hartigan and Hartigan, 1985).
For the bins with significant bimodal distributions, we separately
characterized the mean and variance of each mode. For the shortest
elapsed time-bin (Fig. 7A, left), Hartigan’s dip test was significant,

and the unsupervised clustering algorithm found two means (Fig.
7B) with one mode (99.3 ms) close to the actual elapsed time (50 ms)
and one mode with a mean close to the length of the full interval of
1000 ms (814.2 ms). (Note the means will to some extent be pulled
away from the edge bins due to noise, but this does not account for
the presence of bimodality). In contrast, after 500 ms had elapsed, in
the middle of the interval (Fig. 7C) there was a unimodal distribution
of decoded times with a mean (487.9 ms) close to the target duration.
Similar results could be seen for the elapsed time representation
during the other instructed intervals (Fig. 7D–H; also similar decod-
ing performance was found on the synchronization phase, data not

Figure 5. Average spike density functions (spikes/s, � � 30 ms) of single cells responding
after the button press (time 0 ms in the abscissas) across instructed intervals in the SCT.
A, Neuronal activity of a cell whose activity increases linearly with elapsed time for all instructed
intervals. B, Neuronal activity of a cell that shows a duration increase in its up– down activation
profile as a function of instructed interval. C, Activity of a cell that shows an increase in discharge
rate across target intervals; however, there is also an asymptotic saturation of the response
linked to the instructed interval. The color code for target intervals is described in B (inset).
Note that different nonlinear patterns of ramping activity modulated by the instructed intervals
are present in our database. From 475 neurons used for the decoding of Figure 7, 240 neurons
showed ramping activity whose duration, peak activity, and/or slope showed significant differ-
ences for instructed interval (ANOVA, p � 0.05).
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shown). There was a linear increase of the decoded time as a function
of actual elapsed time in all the instructed intervals, with a represen-
tation of previous and subsequent intervals early and late between
taps. This indicates that populations of MPC cells represent the pas-
sage of time within intervals, and sometimes represent previous or
subsequent intervals early and late in the interval, respectively. This
can be contrasted with a representation that we did not find, in
which only the onset of the movement, and not elapsed time, would
be represented.

The bimodal behavior in the early time bins for each interval
suggests that the populations sometimes represented the elapsed
times of the previous interval in the earlier bins. Indeed, there was
a linear increase in the mean decoded duration of the long mode
(blue points for early bins) as a function of the instructed time
(Fig. 7I; r 2 � 0.97, p � 0.002), as expected. On the other hand, the
decoded durations for the short modes (blue points for late bins)
at the end of each interval suggest that the cell populations some-
times began to represent the elapsed time of the next interval
early. Consistent with this, the mean decoded interval for the blue
modes in the late bins show a low value that does not change
across instructed times (Fig. 7I; r 2 � 0.048, p � 0.722).

The bounded DDM predicts differences in behavior in the
trials where an inaccurate time is being represented. If one as-
sumes that the DDM resets too late in the trials in which the
neural population is representing the elapsed time of the previous
interval (i.e., the tap was executed because the DDM reached the
threshold, but the integrator did not reset so it was still accumu-
lating at the beginning of the next interval), then the accumulator
would also start late in these trials and correspondingly would
tend to end late. We did in fact find for the 1000 ms condition
(but not for the other conditions; t test, p � 0.05; using the
Bonferroni correction for multiple comparisons), that taps oc-
curred later in the continuation phase when the elapsed time of
the previous trial was still being represented at the beginning of
the next tap (Fig. 7J). Correspondingly, if the neural representa-
tion of elapsed time began to represent the next trial early
(corresponding to small elapsed time estimates at the end of the
interval because the accumulator had reset before the tap was

executed), it would suggest that the accumulator was starting
early and would correspondingly end early. Results for these trials
were less consistent. However, we did find that, for the first re-
sponse in the continuation phase the responses occurred earlier
in the next tap, when the neural population began to represent
the subsequent interval early (Fig. 7K). This suggests that the
reset of the accumulator did not always correspond exactly to the
time at which the tap was executed and that when the accumula-
tor started early, the next response in the sequence sometimes
occurred early, and when the accumulator started late the re-
sponse sometimes occurred late. Furthermore, these findings
support the notion that the precision and the ability to adapt to
changes in the beat during rhythmic timing may depend on the
resetting mechanism of the DDM.

We next hypothesized that if the neural estimate of time
within an interval was in advance of the actual elapsed time, the
animals would respond earlier. Correspondingly, if the neural
representation was behind the actual elapsed time the animals
should respond later. For example, for a 1000 ms instructed in-
terval, if the decoded value is 1000 ms for an actual elapsed time of
800 ms, the neural readout mechanism (i.e., the threshold) that
produces the tapping would generate the movement earlier (i.e.,
at 800 ms) than the instructed time, since the readout would
reach the threshold value before the actual time. To examine this,
we computed the correlation between the trial-by-trial error in
the decoded time estimates (i.e., whether it was in advance of or
behind actual elapsed time) and the error in the produced inter-
vals, for each time bin during the interval. We found, as pre-
dicted, a negative correlation between the neural residual (i.e.,
whether the decoded time estimate was above or below the actual
elapsed time) and the produced interval in both the synchroni-
zation (r � 	0.293, p � 0.0001) and continuation phases (r �
	0.492, p � 0.0001; Fig. 8A,B). Furthermore, the correlation
was larger in the continuation phase, when behavior was entirely
driven by the neural estimate of elapsed time, than it was in the
synchronization phase, across the last six bins before the tapping
time (Z � 4.79, p � 0.00001; Fig. 8A,B). In addition, the negative
correlation between the decoded and behavioral errors was ho-

Figure 6. Time decoding based on individual serial order elements is more robust than using all the sequence of the SCT. A, Number of recording sessions that showed significant linear relations
between the decoded and actual time bins across the five instructed intervals and the six serial-order elements of the SCT. Each of the 53 recording sessions could add a maximum of 30 counts in the
plot (5 instructed intervals by 6 serial-order elements) if the decoded values for each interval/serial-order combination showed a significant relation between the decoded and the elapsed time. Note
that all the combinations of instructed intervals and serial-order elements are represented in the population decoding. B, The entropy for individual serial-order elements is smaller than the entropy
of the decoding posterior probabilities using all serial-order, indicating that the different cell populations carry duration information for specific serial-order elements.
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mogenous for time bins ranging from 350 ms before the next tap
to the actual tapping time, with a significant bias toward the
continuation (� 2 �, p � 0.05; Fig. 8C–F). Therefore, this associ-
ation tended to be stable across time, leading up to the end of the
interval. This is also consistent with the animal executing a tap
when the representation of elapsed time reaches the threshold
consistent with the instructed interval.

The preceding analyses suggest a close relationship between
the neural representation of elapsed time and the actual interval
produced, on a trial-by-trial level. This representation by itself
would be consistent with several models of interval timing.
Therefore, we next examined the second order statistics of the
neural representation of elapsed time to see if they were consis-
tent with a DDM. The DDM we have fit has a characteristic
covariance matrix (Fig. 9C). Specifically, the temporal autocor-
relation function of this DDM is R�t1, t2� � �2 min�t1, t2� (see
Methods). Intuitively this follows from the fact that once the

particle position drifts above its mean value for a given interval, it
will on average tend to stay above its mean, and correspondingly
if it drifts below its mean it will tend to stay below its mean. If the
underlying computation implemented in the brain to track
elapsed time is approximately a DDM, and we are reading out the
representation with the decoding analysis, then we would expect
the decoded representation to be statistically similar to the
model. It can be see that the autocorrelation function of the de-
coded time was similar to the autocorrelation function for the
DDM (Fig. 9A for the synchronization and B for the continuation
phase for the 850 ms instructed interval, averaged across sessions)
up to 
75% of the interval, after which the relationship was less
clear. The breakdown of the relationship may be due to the early
resets of the accumulator in the late bins, in some trials. To quan-
tify the consistency between the autocorrelations function of the
model and the data we used linear regression to assess the consis-
tency between the measured autocorrelation function (Fig. 9B),

Figure 7. Time decoding during the SCT. A, Median (black dot) and interquartile (blue bar) values of the decoded times as a function of instructed time for the 1000 ms interval. The blue dots
correspond to outlier data. B, Bimodal distribution of the decoded times of the first bin (50 ms) in B, where the bimodal mixture model converged with a low (red) and a high value mode (blue).
C, Unimodal distribution the decoded times of the bin 10 (500 ms) in B. The mean is close to the target bin time. D–H, Mean � STD (across recording sessions and 3 serial-order elements) for the
unimodal (only red dots in the intermediate bins) and the bimodal mixture (red and blue circles in the extreme bins of the interval) models for the five instructed intervals of the continuation phase.
The number of blue dots in each instructed interval depended on the significance of the bimodal model in each time bin. I, Mean (�SEM) of the second � of bimodal mixture for the earlier bins
(�-previous) and the last bins (�-next) as a function of the instructed time. Note how the �-previous scales with the duration of the instructed interval. J, The animals’ interval error (produced-
instructed interval) as a function of the six serial-order elements of the task, three in the synchronization (S1–S3) and three in the continuation (C1–C3) phase, for the first four bins of the
1000 ms instructed interval. The behavior was divided on the trials associated with the larger (blue) and smaller (red) mode of the decoding times in H. K, Same as J but for the last four
bins of the 1000 ms instructed interval. In this case, the behavior was divided on the trials associated with the smaller (blue) and larger (red) mode of the decoding times in H.
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and the prediction based on min (t1, t2) (Fig. 9C). We found for
the continuation phase that a linear regression provided a reason-
able, statistically significant fit (F(2,493) � 60.6, p � 0.001; Fig.
9D). There was also a significant fit for the synchronization phase

(F(2,493) � 47.3, p � 0.001). Although there was a stronger asso-
ciation in the continuation phase, a direct test of the correlation
coefficients did not show a difference between the synchroniza-
tion and continuation phases (p � 0.05). The structured auto-

Figure 8. Trial-by-trial relation between decoding and behavior. A, B, Negative correlation between the error in decoded time and the animals’ time error on a trial-by-trial basis. There is a larger
significant negative correlation between these two measures in the continuation (B) than the synchronization phase (A). C, D, Percentage of significant negative correlations (from 15 conditions that
come from 5 instructed intervals and 3 serial order elements) between the decoded and the behavioral error as a function of the time to the next tap, for the synchronization (C) and continuation (D)
conditions. E, F, Pearson correlation coefficient (r) for significant ( p � 0.05) negative correlations between the decoded and the behavioral error as a function of the time to the next tap, for the
synchronization (E) continuation (F ) conditions.
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correlation function of the decoded values suggests a stable
representation of the passage of time in MPC, which is in agree-
ment with the time series structure of the DDM.

Neural representation of elapsed time in a sequence task
without timing
The decoding of elapsed time was also performed on the same
populations of cells during the SRTT (Fig. 2). In this paradigm,
the animals pressed the button in response to five brief stimuli
presented in a sequence, but separated by a random interstimulus
interval, precluding the time prediction of the next stimulus–
response loop. The time decoding using the population neural
activity recoded during the SRTT showed a limited relation with
the actual elapsed time (Fig. 10A, yellow dots), which contrasts
with the linear increase in decoded time as a function of elapsed
time in the synchronization phase of the SCT for an equivalent
instructed duration (Fig. 10A, red dots). In addition, across all the
decoded bins the distribution of decoded times during the SRTT
were unimodal according to the Hartigan’s dip tests. On the con-
trary, during the synchronization phase the decoding was signif-
icantly bimodal for the initial and final bins (Fig. 10A, blue dots;
as shown above). Furthermore, the decoding entropy, and the
overall temporal variability in the decoding was larger in the
SRTT than in the synchronization phase (Fig. 10B,C).

Discussion
The present study supports five conclusions. First, the linear re-
lation between the mean and the SD of the monkeys’ produced
intervals during the SCT is consistent with the behavior that
would be produced by a DDM that accumulates a difference of
Poisson counts. Second, populations of MPC cells faithfully rep-
resented the elapsed time between taps, although in some trials
there was a lingering representation of the previous interval,
whereas in other trials the representation of the subsequent in-
terval started just before the tap was produced. Third, there was a
significant trial-by-trial relation between decoded times and the
timing behavior of the monkeys during the continuation phase of
the SCT, such that when the neural estimate of time reached the
target interval early, the response was executed early and when
the neural estimate of time reached the target interval late, the
response was executed late. Fourth, decoded time values showed
an autocorrelation structure consistent with the DDM. Finally,
the coordinated time decoding that governed the execution in the
SCT was disorganized during the control task, which included
similar stimuli, motor tapping, and sequential organization, but
where rhythmic timing was precluded.

Several models have been developed to explain the perception
and production of temporal intervals. These include: (1) DDMs
where the slope of the accumulator process changes as a function
of the timed interval (Schöner, 2002; Simen et al., 2011, 2016) as

Figure 9. Similar autocorrelation structure between the decoding data and the DDM. A, B, Autocorrelation matrix of the decoded times for the 850 ms instructed interval across time bins within
produced intervals. During the continuation phase (B), the autocorrelation is broader than during the synchronization phase (A). C, Autocorrelation function for a diffusion process. D, Relationship
between model estimate of autocorrelation and measured autocorrelation of the process in the decoded data (mean � SEM).

Merchant and Averbeck • Computational and Neural Basis of Rhythmic Timing J. Neurosci., April 26, 2017 • 37(17):4552– 4564 • 4561



we have used here; (2) diffusion models where the response
bound changes to produce different intervals (Churchland et al.,
2011); (3) biophysical state-dependent networks, where time is
encoded in the current state of recurrent networks (Buonomano,
2000; Karkarkar and Buonomano, 2007); (4) the traveling of neu-
ronal activity along a chain of neural groups, where time is en-
coded in both the speed at which the neural signal travels through
the network and the neural elements that are active at the end of
an interval (Kitano et al., 2003; Hass et al., 2008); and (5) Neural
oscillation models that can be subdivided in: (a) single oscillators
that encode time based on counting the number of revolutions of
the oscillator (pacemaker-accumulator models; Treisman, 1963);
(b) coupled oscillators with frequencies that adapt to rhythms or
temporal cues so that the adapted frequency of the oscillator
itself is used to encode the temporal information (dynamic at-
tending theory; Jones and Boltz, 1989), (c) oscillatory interac-
tions between sensory and motor areas of the brain define timing
and rhythm perception (neural resonance theory; Large, 2008;
Large et al., 2015); and (d) striatal beat frequency model that
suggests that striatal medium spiny neurons act as coincidence
detectors that can temporalize events by continuously comparing
the current pattern of heterogeneous oscillatory cortical activity
with the pattern detected at the time of the reward (Matell and
Meck, 2004). Theoretically, these mechanisms can be understood
within a dynamical systems framework, where different dynam-
ical variables (such as the ramping activity; Merchant et al., 2011)

and the rapid succession of active tuned cells (Crowe et al., 2014;
Merchant et al., 2015b) are represented as a state vector. Thus, the
trajectory in a high-dimensional state space spanned by these
variables encodes the passage of time (Merchant et al., 2014; Gou-
vêa et al., 2015).

It has previously been shown that a two-parameter DDM
model (Class 1 above) based on the integration of the difference
of two Poisson processes (Simen et al., 2011, 2016) reproduced
the scalar property of interval production, a form of Weber law,
which establishes the mean-SD relationship that has been docu-
mented in many species and temporal tasks (Gibbon et al., 1977).
This follows from the fact that the SD of the response time distri-
bution produced by these models increases with time (Simen et
al., 2011). In the present study, we have found substantial addi-
tional behavioral and neural support for this model. Indeed, not
only did the monkeys’ behavior follow the scalar property of
interval timing, but also the autocorrelation structure of the de-
coded values within the produced interval was consistent with the
autocorrelation function of DDM models.

In contrast to Model 1, Model 2 leads to a decrease in the SD of
produced intervals with time, although this can be overcome by
introducing additional sources of noise (Gibbon et al., 1997). The
behavior data are consistent with Model 3, but at least in some
implementations this model produces an auto-correlation func-
tion (Fig. 11) that is not consistent with the autocorrelation of the
neural decoding during the synchronization and continuation

Figure 10. Comparing the decoding during the synchronization phase of the SCT and the SRTT. A, The mean � STD for the unimodal distribution of decoded times during the SRTT control task
shows a weak relation with the actual instructed time. In contrast, the decoded times linked to the actual time representation show a linear relation (slope � 0.943) with the instructed time during
the 1000 ms interval of the synchronization phase of the SCT. In addition, the second mode of the bimodal mixture model (blue circles) is associated with the time bins of the previous and next
serial-order elements of the SCT task during the extreme bins of the interval. B, Entropy of the decoding posterior probabilities for the synchronization phase of the SCT and the SRTT. C, Mean � STD
of the temporal variability (SD) of the decoded times across bins for the synchronization phase of the SCT and the SRTT.
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phases (Fig. 9C,D). Models 4 and 5 cannot easily reproduce the
scalar property of interval timing (but see Matell and Meck, 2004;
van Rijn et al., 2014).

The orchestrated representation of actual elapsed time be-
tween taps by populations of MPC neurons was observed cycli-
cally along the tapping sequence of the SCT. Ramping MPC cells
can increase or decrease activity with the time remaining to the
next action or correspondingly the elapsed time from the last
movement (Merchant et al., 2011). Either increasing or decreas-
ing activity can encode elapsed time. We also found that in some
trials the previous interval was represented after the tap was exe-
cuted, and in some trials, the representation of the subsequent
interval began before the tap was executed. This suggests that the
process that resets the accumulators is not identical with the pro-
cess that executes the tap, as they were not perfectly coordinated.
The dissociation between the reset mechanism and the tap exe-
cution therefore contributes to the variability and rhythmic
structure of the motor behavior. Recent studies have shown in
single interval timing tasks that cortical and striatal neural pop-
ulations have an accurate representation of the passage of time,
with linear relations between the decoded and the elapsed time
(Matell et al., 2003; Gouvêa et al., 2015; Bakhurin et al., 2017).
However, in these studies no signs of a representation of the
previous or next interval were found, supporting the notion that
a concatenated mechanism that represents the past, present, and
future intervals is exclusive of rhythmic behaviors.

The tight relation between the rhythmic motor behavior of the
animal and the decoding by cell populations in MPC was partic-
ularly evident during the continuation phase of the task. This
observation goes along with the functional imaging studies sug-
gesting that MPC is more active during the continuation than the
synchronization of the SCT (Rao et al., 1997; Lewis et al., 2004).
However, the temporal resolution of the neural signals recorded
in the current experiments not only allowed for the characteriza-
tion of the strong trial-by trial relation between decoding and
behavior, but also permitted the observation of a stable neural
representation of elapsed time throughout hundreds of millisec-
onds before the tapping in the internally driven epoch of the SCT.
Thus, the MPC is a critical processing node of the temporal
(Merchant et al., 2013b, Mita et al., 2009, sequential (Tanji, 2001),

and rhythmic structure of the internally controlled tapping move-
ments. Neural population decoding of single intervals.

When monkeys were reacting to a series of unpredictable stimuli,
there was a strong disruption of the dynamic signals that integrated
in a cyclic fashion the temporal information about the previous, the
actual, and the following produced intervals during the SCT. Al-
though the control task has similar stimuli, motor tapping, and se-
quential organization; the fact the SRTT avoids rhythmic behavior
and time prediction is accompanied by a clear disorganization of the
neural cyclic process that orchestrates time signals at contiguous
serial order elements of the movement sequence.

Conclusion
Here we have found that sequentially arranged DDMs, or an accu-
mulator that resets after each tap, can account for behavior in the
SCT. Furthermore, the results provide neural support for this type of
model during rhythmic tapping performance. Specifically, we found
that the neural representation of elapsed time in some trials was
more consistent with the previous or subsequent interval, which
suggests that the mechanism that resets the accumulator or leads to
initiation of the next accumulator was not perfectly coordinated
with the production of the tap. In addition, when the neural repre-
sentation of elapsed time was in advance of actual elapsed time, taps
were executed early and when the neural representation of elapsed
time was behind the actual elapsed time, taps were executed late.
Finally, the trial by trial significant correlation between the decoded
values over different time bins persisted from 350 ms before the next
tap to the actual tapping time, imposing an autocorrelation function
of the neural representation of elapsed time that was consistent with
the autocorrelation function generated by DDM. Therefore, the
computational mechanism underlying the generation of rhythmic
behavior is consistent with several features of DDMs.
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