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Neural basis for categorical boundaries in the
primate pre-SMA during relative categorization of
time intervals
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Perceptual categorization depends on the assignment of different stimuli to specific groups

based, in principle, on the notion of flexible categorical boundaries. To determine the neural

basis of categorical boundaries, we record the activity of pre-SMA neurons of monkeys

executing an interval categorization task in which the limit between short and long categories

changes between blocks of trials within a session. A large population of cells encodes this

boundary by reaching a constant peak of activity close to the corresponding subjective limit.

Notably, the time at which this peak is reached changes according to the categorical

boundary of the current block, predicting the monkeys’ categorical decision on a trial-by-trial

basis. In addition, pre-SMA cells also represent the category selected by the monkeys and the

outcome of the decision. These results suggest that the pre-SMA adaptively encodes sub-

jective duration boundaries between short and long durations and contains crucial neural

information to categorize intervals and evaluate the outcome of such perceptual decisions.
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Categorization aids in giving meaning to objects or events in
the environment by assigning them to separate classes or
groups1. For instance, animals can be classified as prey or

predators, and fruits as edible or poisonous. Abstract magnitudes
such as the passage of time can also be categorized. Thus, the
duration of events or the interval between stimuli can be classified
as short or long2–4. Categories are often separated by boundaries
and stimuli are treated as equivalent if they belong to the same
category or as different if they belong to a different category even
if they resemble each other5. In addition, categorization is flexible,
new arbitrary categories can be learned, and the same object can
be classified as belonging to different groups depending on where
the subjective limit between categories are located2,6–9. Therefore,
categorization is a core element of cognition and has an impor-
tant role in the evolution of species, since it allows for the rapid
selection of the proper behavioral responses across a wide range
of stimuli10.

Recently, important discoveries have been made on the
understating of the neural basis of categorization. Neurophysio-
logic studies in monkeys categorizing visual or somatosensory
stimuli have shown that several cortical and subcortical areas
represent the category membership of stimuli at the single-cell

level (medial premotor cortex11,12; neostriatum13–15; lateral intra-
parietal area7,16; area 7a9,17,18; and prefrontal cortex6,8,9,15,17,19).

Several hypotheses have been proposed to explain how the
brain assigns different stimuli to specific categories1,20–23. Most of
them imply the comparison of the stimulus to be categorized
against mental representations of the limit between potential
categories and/or of their prototypes. Neural recording studies
found that categorization is associated to a bottom-up transition
from stimulus-related to category-related signals9,11,24,25.
Recently, a cortical network model was developed to explain the
categorization of the movement directions of a visual stimulus23.
In this model, category-selective activity emerged in a layer of
association neurons located between sensory and decision neu-
rons through reward-dependent plasticity and was conditioned to
the presence of choice correlated activity fluctuations on the
association neurons23. Nevertheless, in these studies the category
limits and/or prototypes remain implicit in the transformation
from stimulus to category-selective responses and, in fact, the
neural bases of these crucial category elements are still largely
unknown.

Here we test whether a neural representation of categorical
boundaries is implemented during a temporal categorization task,
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Fig. 1 Trial events during the interval categorization task and behavioral results. a Monkeys categorized the interval between the first and second stimulus
presentation as “short” or “long” by moving the red cursor into the orange or blue circular targets, respectively. b An example of a possible target
configuration, with the response circles 180° apart. Gray circles (not visible in the actual task) show the eight possible target locations. c The three blocks
of stimuli employed in this study (T1, T2, and T3). The short/long implicit limits for T1, T2, and T3 are 350, 685, and 1195 ms, respectively. Note that some
time durations could be correctly categorized either as “short” or as “long” depending on the particular block presented to the monkey. d Psychometric
curves for the two monkeys for the three blocks of durations. Dots represent the mean (±SEM) probability of categorizing a particular interval as long. e
Mean (±SEM) of the reaction times of the monkey 1 as a function of the test intervals for the three blocks of stimuli
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where Rhesus monkeys categorize the duration of eight intervals
as short or long according to a criterion acquired immediately
before performing the task2,26. Critically, in each recording ses-
sion, we employ three independent blocks, each composed of
eight intervals. Also, each block has a different between-categories
boundary. Monkeys report their categorical decision by moving a
cursor inside an orange circle for short durations and inside a
blue one for long durations. From trial to trial, these two targets
could appear in any of eight possible positions, precluding the
animals’ anticipation of the direction of their movement. Con-
sequently, this experimental design allowed us to search for the
neural correlates of flexible categorical boundaries and category-
selective responses without the contamination of neural activity
related to motor planning.

We recorded single-cell activity in the pre-supplementary
motor cortex (pre-SMA), as it is well known that this area is a

major node in the time processing network27–36. The results show
that some pre-SMA cells encode the boundary between categories
by reaching a constant peak of activity close to the limit between
the short and long intervals within a block of trials. Interestingly,
a subgroup of these cells dynamically changes the moment at
which they reach this peak depending on the location of the
categorical boundary of the current block of trials. A trial-by-trial
analysis reveals that monkeys solve the categorization task by
comparing this categorical boundary representation with that of
the interval. We provide a realistic neural-network model for this
comparison. Furthermore, within the pre-SMA there are partially
overlapping neural populations that represent the category
selected by the monkeys and the outcome of the decision. Con-
sequently, these results suggest that the pre-SMA adaptively
encodes the subjective boundary between short and long dura-
tions and is also involved in the processing of the additional
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Fig. 2 ‘Boundary’ neurons encode the boundary between short and long categories across stimulus blocks. aMean SDFs of a neuron for the test intervals of
the T1 block. The two green vertical lines correspond to the two stimuli (s1 and s2) that define the test interval; the SDFs are aligned to the first stimulus.
The time of peak activity (asterisk) occurs close to the implicit limit between short and long categories for this block (350ms). The black vertical line
indicates the target presentation (ta) and the gray rectangle the standard deviation of the movement initiation (rt). b Activity of the same neuron in a but
recorded in the T3 block. The peak of activity shifted to the right, close to the limit for this block (1195ms). c Histograms and corresponding Gaussian
fittings of the mean times of peak activity for all boundary neurons across the three blocks (see the inset for color code). Arrowheads show the location of
the implicit limit for each block. Asterisks indicate the mean times of peak activity of the neuron in a, b. d DL from both monkeys (red) and the standard
deviation of the Gaussian functions in c as a function of the implicit limit for the three blocks. Lines show the best linear fits to the data. The linear increase
in temporal variability (threshold) as a function of implicit limit duration (i.e., the scalar property of interval timing) is similar to the increase in the standard
deviation of the peak time distributions for boundary neurons across the three blocks. The slope and constant are 54.5 and 0.09 for the psychometric
behavior, and 45.2 and 0.06 for the boundary neuron distributions (both fits with p < 0.05). e Comparison between the behavioral constant error (mean ±
SEM) and the time difference between the mean of the Gaussian functions in c and the implicit limit for the three blocks. Both the behavioral (red) and
neural measures overestimate the shortest block (T1) and underestimate the longest block (T3)
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information needed to generate categorical decisions and to
evaluate the corresponding outcome.

Results
Interval categorization task. Monkeys categorized the interval
between two visual stimuli as “short” or as “long” by selecting an
orange or a blue target, respectively (Fig. 1a, Methods section). To
start a trial, the animals gazed inside a fixation point and placed
and maintained a cursor inside a central circle. Then, a brief
visual stimulus (two parallel bars) was presented twice, with each
presentation separated by a test interval. After a fixed delay, the
two response targets were presented, and the monkey moved the
cursor into the target that expressed his categorical decision
(Fig. 1a, b). Within a trial, the response targets were placed in one
of eight possible locations on the periphery of the fixation point
(Fig. 1b). Crucially, on every recording session monkeys cate-
gorized three different blocks of stimuli (T1, T2, and T3), each
containing eight different intervals. The shortest four intervals of
every block were considered “short” and the remaining four,
“long” (Fig. 1c). Moreover, depending on the particular block
being categorized by the monkey, some duration could be cor-
rectly categorized either as “short” or as “long” (e.g., the 450 ms
interval for T1 and T2). Thus, to categorize the stimuli, animals
first had to acquire a categorization criterion. This happened
during the initial trials (known as “training phase”), in which only
the shortest and the longest intervals (the reference intervals) of
that block were presented in an alternate fashion. The visual
stimuli that delimited the intervals were orange for the short and
blue for the long intervals. We expected that in this way, the
monkeys would generate a mental implicit value that would serve
as a limit or boundary between categories. Next, the animals
entered the “testing phase” in which the stimuli were always
green, and the eight intervals of the block were presented
randomly.

Behavior. The psychometric curves of both monkeys followed a
typical sigmoid shape (Fig. 1d). For every block of stimuli, the
probability of categorizing a particular interval as long increased
as a function of the interval duration. Consequently, correct
responses were more frequent for the shortest and longest
intervals of a block, and errors were mostly observed for the
intermediate intervals. In addition, we found that the slopes of the
psychometric curves decreased as a function of the block of
intervals (Fig. 1d), which indicates that the sensitivity of the
monkeys diminished as a function of the duration of the intervals
being categorized2. In fact, the difference limen (DL) increased
linearly as a function of the block of intervals (Fig. 2d; red dots
and line; Kruskal–Wallis test, H2= 50.95, p= 8.62, N= 816; e
−12; r= 0.71, p= 1.13 e−13; Table 1), following the scalar
property of interval timing, which is a form of Weber’s law that
has been widely documented across different motor and per-
ceptual timing tasks37,38. Importantly, the wider time ranges
employed in T2 and T3 could also contribute to the differences in
slopes. The point of subjective equality (PSE), a measure of the
subjective boundary between categories, was calculated from the

psychometric curves as the interval at ‘p long’= 0.5. The PSE can
be directly compared with the actual category boundary by cal-
culating the constant error (CE: the difference between the PSE
and the implicit boundary between categories). In both monkeys,
the CE was close to zero for the three blocks, which implied that
the estimation of the implicit value was accurate. Nevertheless,
the CE showed a small linear decrease as a function of the implicit
category boundary (Fig. 2e; red dots and line; Kruskal–Wallis test,
H2= 22.71, p= 1.17 e−5, N= 816; r=−0.51, p= 1.18 e−6;
Table 1). This last observation indicated that monkeys slightly
underestimated the block T1 and overestimated the block T3.
This corresponds to a slight overestimation of the boundary
between short and long categories in T1 and to a boundary
underestimation in T3. Similar biases in temporal estimation
across blocks with different intervals have been consistently
reported in the human timing literature39,40 further validating the
monkey as a good animal model to study time categorization.

We also observed that intervals near the category boundary,
which were harder to categorize, were associated with an increase
in reaction time (RT)41 (Fig. 1e, Supplementary Fig. 1). We
performed an ANOVA, using the RT as dependent variable and
the ordinal interval (1–8) and the block number (T1, T2, and T3)
as factors. The results showed significant main effects for ordinal
magnitude [monkey 1: two-way ANOVA, F(7,320)= 33.21, p <
0.001, N= 344; monkey 2: F(7,257)= 9.89, p < 0.001, N= 280],
but not for block [monkey 1: F(2,320)= 1.3, p= 0.272; monkey 2:
F(2,256)= 2.31, p= 0.101] or the ordinal x-block interaction
[monkey 1: F(14,320)= 0.61, p= 0.85; monkey 2: F(14,256)=
0.95, p= 0.50], supporting the view that it was the proximity of
an interval to the boundary, which increased the difficulty for
categorizing it, not its absolute duration.

Altogether, these behavioral results indicate that the monkeys
were able to extract the temporal information of visually defined
intervals in order to categorize their duration on the basis of
previously instructed short and long prototypes. Additionally, the
psychometric analysis demonstrated that monkeys were also
successful at changing their decision criterion in order to
correctly categorize the test intervals belonging to the different
blocks of stimuli within the recording sessions.

Neurophysiology. A total of 259 neurons were bilaterally recor-
ded from the pre-SMA of monkey 1 and 723 neurons from the
right pre-SMA of monkey 2 during the performance of the
interval categorization task (Supplementary Fig. 2a, b). We
assessed single-unit stability across the different blocks of the task
by measuring the similarity of the average spike waveforms and
the inter-spike interval histograms (ISIHs)32,42. Based on this
analysis, a total of 816 cells were considered stable for at least two
consecutive blocks (196 from monkey 1 and 620 from monkey 2)
and were studied further.

pre-SMA neurons represent the boundary between categories.
Within a recording session, monkeys had to change their decision
criterion in order to correctly categorize the test intervals of
different blocks of stimuli. To do this, one possibility is that

Table 1 Psychophysical measurements

Monkey 1 Monkey 2

T1 T2 T3 T1 T2 T3

Implicit category boundary 350 685 1195 350 685 1195
PSE mean (SEM) 381.4 (7.11) 682.9 (45.22) 1146.4 (17.55) 361.6 (4.42) 643.9 (12.59) 1079.1 (17.88)
DL mean (SEM) 82.57 (4.43) 156.48 (17.62) 156.93 (9.97) 77.78 (5.26) 123.14 (6.14) 181.2 (7.11)
CE mean (SEM) 31.41 (7.11) −2.13 (45.22) −48.63 (17.55) 11.55 (4.42) −41.14 (12.59) −115.88 (17.88)
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monkeys calculated the limit between categories for every block of
intervals and employed it as a decision rule for solving the tasks.
Interestingly, we found a group of pre-SMA neurons whose
activity resembled the subjective boundary between categories for
every stimulus block. The instantaneous firing rate of these
neurons steadily increased to reach a peak and posteriorly
decreased back to the spontaneous activity levels during the
course of a trial (Fig. 2a). This activity peak was reached at a
relatively constant moment after the presentation of the first
stimulus (i.e., the beginning of the test interval) for all the
intervals of a block. Interestingly, for short test intervals this peak
tended to occur after the presentation of the second stimulus, but
for long intervals it occurred before it (Fig. 2a, b). Moreover, once
the monkey switched to categorize the intervals from a different
block, the mean peak time of these neurons was shifted accord-
ingly, closely following the location of the theoretical implicit
boundary (Fig 2b) . Therefore, we call these neurons “boundary
neurons”. Figure 2a, b illustrates a neuron that showed a mean
peak time in the T1 block at 441 ± 27 ms (mean ± SEM) after the
beginning of the test interval, a value close to the implicit
boundary of this block (350 ms; Fig. 2a). In contrast, during the
block T3 the activity of the same neuron reached its peak at 1067
± 25 ms, which is now closer to the implicit boundary of this
block (1195 ms; Fig. 2b). Consequently, within a recording ses-
sion, this neuron adapted its activity pattern to reach its peak at a
moment that was close to the current implicit boundary between
categories of a particular block of stimuli.

The up–down activation profile of the boundary cells was
characterized by the duration of the positive and negative
consecutive ramps, the magnitude of the peak, and the time
from the first stimulus to the activity peak using a linear
regression iterative algorithm (Fig. 3a–c; Methods section). Thus,
units were considered boundary cells when they met the following
criteria: (1) They presented a significant up–down pattern of
activity in at least 5 of the 8 test intervals in a block; (2) their peak
activity was above 8 Hz on each activation period; (3) the time of
peak activity was not statistically different across test intervals
(Fig. 3, Methods section). Indeed, we performed an ANOVA
using the peak time of boundary cells that were active on at least
two blocks as dependent variable and the results showed
significant main effects for block number (two-way ANOVA, F
(2,1254)= 1336.6, p < 0.00001, N= 1255), but not for ordinal
interval (F(7, 1254)= 1.82, p= 0.081) nor for the ordinal x-block
interaction (F(14,1254)= 1.4, p= 0.145; Supplementary Fig. 3a).
In addition, the duration of the up–down cycle of these cells
increased as a function of block number (One way ANOVA, F
(2,416)= 93.7, p < 0.00001, N= 417; Supplementary Fig. 3b).
Considering both monkeys, 190, 159, and 70 neurons showed a
boundary pattern of activity during T1, T2, and T3, respectively.
Most of these cells encoded the boundary in only one block (χ2-
test of independence, x2(1, N= 615)= 55.64; p= 8.66 e−14; see
Methods section and Table 2); namely, different neurons encoded
the boundary in different blocks. Nevertheless, we found 87
neurons, corresponding to 27% of the total boundary cell
population, which showed a boundary pattern of activity on
two or more blocks of stimuli (Table 2). Supplementary Fig. 4
compares the time to peak activity for the group of boundary cells
recorded during only one block of stimuli with that recorded in
two or three. It can be appreciated that the distribution of peak
activity times for both groups is very similar; in fact, a
Kruskal–Wallis test and Dunn-Sidak post hoc showed no
significant differences between them, and only showed significant
differences between the time to peak across blocks
(Kruskal–Wallis test and Dunn-Sidak post hoc, χ2(5)= 312.62,
p < 0.001, NT1oneblock= 116, NT2oneblock= 87, NT3oneblock= 32,
NT1twoormore= 74, NT2twoormore= 72, NT3twoormore= 38;

Supplementary Fig. 4). Moreover, 64.4% of the boundary neurons
recorded in two or more blocks showed a significant shift of the
time to peak in at least one pair of blocks (Wilcoxon signed-rank
test or Kruskal–Wallis test and Dunn-Sidak post hoc test; p <
0.05).

Next, we searched for correlations between the psychometric
performance of monkeys and the equivalent measures from the

0

10

20

30

0

10

20

30

500 ms/div

S
pi

ke
s 

/ s

0

10

20

30

Peak

M
ag

ni
tu

de

Duration
Positive Negative

a

b

c
t init

s1

Slope 1 Slope 2

s2 ta

Fig. 3 Iterative algorithm used to find the best regression model to describe
the increase or decrease of instantaneous activity of boundary neurons over
time with respect to a sensory event. a Raster plot and mean spikes density
function (SDF; σ= 30ms; black function) of the boundary cell in Fig. 2, for
block 3 and the test interval duration of 1470ms, aligned to the
presentation of the first stimulus (s1). b A series of linear regression
functions are displayed (blue lines), including the best model (thicker green
line) identified by the algorithm. c Parameters extracted from the linear
regression model for the identification of bisection neurons

Table 2 Total number of boundary neurons per task
combination

Tasks Number (%) of neurons

T1 T2 T3 10 (3.10)
T1 T2 49 (15.22)
T1 T3 15 (4.66)
T2 T3 13 (4.04)
T1 116 (36.02)
T2 87 (27.02)
T3 32 (9.94)
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population of boundary neurons. The relation between the
subjective and the actual implicit boundary is captured by the CE.
Positive CE values indicate overestimation of the actual boundary,
which is equivalent to an underestimation of the durations in a
block. To obtain an equivalent measure of CE for the population
of boundary neurons, we calculated the difference between the
mean of the fitted distributions in Fig. 2c (435, 660.5, and 1066.4
for T1, T2, and T3, respectively) and the actual implicit boundary
of the corresponding block of stimuli (350, 685, and 1195 for T1,
T2, and T3, respectively). The neural CE tended to underestimate
the shortest block of intervals (T1) and overestimate the longest
block (T3), similar to the psychometric behavior of the animals
(Fig. 2e; constant and slope for behavior: 51.4 and −0.11;
constant and slope for neurons: 113.6 and −0.19; both linear fits
with p < 0.05). In addition, there was a close correspondence
between the monkeys’ DL and the equivalent from the population
of boundary neurons (the dispersion of the distribution of mean
peak times in Fig. 2c). Both the monkeys’ DL and the standard
deviation of the peak time distributions increased with a similar
slope as a function of the implicit limit duration (Fig. 2d; constant
and slope for behavior: 54.5 and 0.09; constant and slope for
neurons: 46.7 and 0.075; both linear fits with p < 0.05).

Since the boundary cells were detected using an analysis
window including the categorized interval plus 500 ms after the
second stimulus, the shift of peak activity across blocks could
result from the different size of the analysis window. Hence, we
conducted the same analysis using a constant window of 700 ms
before and after the second stimulus across durations and blocks
on the original boundary cells and also with a window of fixed
size across test intervals (the longest test interval of each block
plus 500 ms before and after) and aligned to the first stimulus.
The results showed that the peak times of boundary cells were
similar with the three detection methods, showing a high
correlation when computed with a variable or a constant window
(variable window across trials and blocks vs fixed window aligned
to the second stimulus: Pearson R= 0.958, p < 0.00001, N= 356;
variable window across trials and blocks vs fixed window across
trials and aligned to the first stimulus: Pearson R= 0.968, p <
0.00001, N= 331; Supplementary Fig. 5a, b). Furthermore, the
peak of activity of boundary cells detected with a constant
analysis window showed the same increase in standard deviation
of peak time distributions and similar properties on the neural CE
across blocks (Supplementary Fig. 5c, d). Finally, for the cells that
showed boundary activity on two consecutive blocks, we
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calculated their peak activity times for shared test intervals,
namely, 450 and 550 ms for blocks 1 vs 2; and 870 and 920ms for
blocks 2 vs 3. The mean time to peak of these boundary neurons
showed a significant increase between consecutive blocks
(Supplementary Fig. 6a, b). Moreover, we found similar effects
when the same analysis was performed on the subset of cells that
showed boundary activity in only one block (Supplementary
Fig. 6c, d), suggesting that pre-SMA boundary neurons shift their
time to peak across blocks at the single-cell level and/or at the
population level.

Overall, these findings support the notion that the activity of
the boundary neurons found in the pre-SMA corresponds to a
subjective representation of the boundary between categories that
changes between blocks of stimuli. Accordingly, we propose that
this neural activity could serve as a decision criterion for the
categorization of time intervals in the millisecond range. In the
next section, we test this idea explicitly.

Decisions are predicted on every trial from boundary neurons.
We hypothesized that the up–down pattern of activity of the
boundary neurons can be employed by an “optimal neural
decision reader” as a criterion to categorize intervals as short or
long, depending on the temporal relation between these neu-
rons’ activity peak and the occurrence of the second stimulus.
To test this idea, we first evaluated whether the activity of single-
boundary neurons could be employed on a trial-by-trial basis to
predict the forthcoming categorical decision of the monkeys. We
quantified the elapsed time (τ) between the peak of activity and
the occurrence of the second stimulus for each trial of the eight
test intervals (Fig. 4a, b) and then found the value (decoding
criterion) that minimized the error to classify the stimuli as
short or long short based on τ (Fig. 4c, d red line). Finally, a
neurometric curve was constructed by computing the prob-
ability that the neuron chose a test interval as “short” or “long”
based on the number of trials that were above or below the
decoding criterion (Fig. 4d, e). A contingency table was calcu-
lated between the decoded and the observed monkey’s choices
across all trials and a χ2-test was performed on the table. For the
neuron in Fig. 4 the relation between psychometric and neu-
rometric data were remarkably strong (96 trials; χ2-test= 63.8,
p < 0.00001), supporting the notion that the activity of this
boundary cell contributed to the monkey's choice. Conse-
quently, the DL and PSE from the neurometric and psycho-
metric functions were practically identical (neurometric DL:
111 ms, neurometric PSE: 1051 ms; psychometric DL: 112 ms,
psychometric PSE: 1052 ms; Fig. 4e. See Supplementary Fig. 7
for more examples). We also computed an analog of the choice
probability index43, which indicates the proportion of beha-
vioral responses that can be predicted from the length of the
neuron's τ. This index acquires values between 0 and 1 (where 1
indicates a perfect separation between the τ distributions for
short and long responses), and was computed using only the
neural and behavioral data of the intermediate intervals in a
block, in order to obtain a balanced number of short and long
categorical decisions for every interval44 (Methods section). The
boundary-choice probability index of the neuron in Fig. 4 was
0.84. We found that 130 boundary neurons showed both a
significant relation between neural decoding and behavioral
performance (χ2-test, p< 0.05, 96 trials) and a boundary-choice
probability index larger than 0.6.

In sum, these findings show that the relation between the
peak activity of boundary neurons and the end of the test
interval predicted, on a trial-by-trial basis, the forthcoming
monkeys’ perceptual decision long before the actual response of
the animal.

Boundary neural population activity. Since the distribution of
peak activity times in boundary neurons covers a range of values
(Fig. 2c), we suggest a population code reads over time the
activity of all boundary cells. Figure 5 shows the average popu-
lation activity of boundary cells across the three blocks of stimuli.
It is evident that the population response reached a peak within a
range close to the implicit boundary across target intervals for the
three blocks. Our hypothesis is that the population activity is the
signal used by an optimal reader, which selects the short category
when the neural response to the second stimulus occurs first, or
the long category when the boundary cell population’s activity
peak occurs first. This boundary population signal would depend
on both the group of neurons that represent the boundary across
blocks and the neurons that are recruited to encode the boundary
for only one block of stimuli. In the next section, we show a
model we developed to test how this could be implemented at the
neural circuit level.

A recurrent neural-network model of boundary cells. As a
proof of concept, we developed a neural-network model con-
sisting of a linear classifier (Fig. 6a, right) that categorized interval
durations as short or long based on the activity from two inde-
pendent recurrent neural networks (Fig. 6a, center): one proces-
sing the information about the boundary between categories and
another encoding the pair of visual stimuli delimiting the test
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intervals (Fig. 6a, left). The neurons in each network were
modeled as Integrate-and-Fire cells with short- and long-term
currents (Methods section). All neurons in these networks pro-
cessed two stimuli separated in time by a particular duration: the
neurons in the sensory network received two short pulses defin-
ing the test interval (Fig. 6b); in contrast, the inputs to the neu-
rons in the boundary network were separated by Gaussian-
distributed intervals, resulting in an up–down profile of activation
with slightly different peaks for different neurons in this network

(Fig. 6c). Overall, however, the population signal showed an
activity peak that was close to the implicit interval, as observed on
the actual neural population responses (Fig. 5). In addition, the
Gaussian input distribution of the boundary network had a mean
on the implicit interval of a block and a standard deviation that
increased as a function of the blocks of stimuli simulating the
properties of the boundary cells. A principal component analysis
(PCA) was performed on the time-varying activity of the cells of
the sensory and boundary networks to produce population state
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trajectories in three dimensions, including two for the boundary
network (X: PC1, Y: PC2) and one for the sensory network (Z:
PC1) (Fig. 6a, right; Supplementary Fig. 8a). The projection of the
high-dimensional individual neural activity into a low-
dimensional topological space can generate a robust and stable
manifold that represents the latent task variable45. In this case,
the trajectories reflect the occurrence of the stimuli, the catego-
rical boundary representation, and the categorical decision over
time. The network trajectories across trials showed a curvilinear
path for the PC1 and PC2 of the boundary network for all
intervals. In contrast, the PC1 of the sensory network showed a
sharp upward shift for the second stimulus, which defined the end
of the interval. A linear classifier was used to find the plane in the
PCA space that could divide short and long intervals according to
the psychometric performance of the monkey (Methods section).
The classification plane (gray plane Fig. 6a right; Supplementary
Fig. 8d) allowed us to compute the probability of classifying an
interval as long based on the neural trajectories of 50 neural-
network simulations (Supplementary Fig. 8d). Thus, the pro-
portion of simulations lying to the left and right of the plane were
considered short and long, respectively. This classifier also found
the decision time in the trajectory where the neurometric per-
formance was closest to the monkeys’ categorization behavior,
corresponding to the moment where, theoretically, the decision
was reached. For example, for the shortest test interval of block 3,
the optimal decision time to classify the interval as short occurred

just after the presentation of the second stimulus (Supplementary
Fig. 8b), whereas for the longest test interval the optimal decision
time of the classifier was before the second stimulus, close to the
peak of the boundary network population activity (Supplemen-
tary Fig. 8c). The model generated neurometric curves (Fig. 6d)
that showed a CE (Fig. 6e) and DL (Fig. 6f) that were very similar
to the monkeys’ psychometric behavior across the three blocks
(Figs. 1d, 2d, e). Therefore, the model’s predictions support the
notion that an optimal reader uses the population signal of the
boundary cells together with the detection of the second stimulus
defining an interval to determine whether an interval is short or
long, following the rule described in the previous section.

Category-selective neurons. We also found a large group of pre-
SMA cells that showed all the properties of category-selective
neurons, that is, their activity differentiated between categories
while showing a homogenous response within each category.
Furthermore, their activity mirrored the categorization behavior
of the monkeys, namely, both the neurometric and psychometric
functions showed a sigmoidal shape with clear differences
between categories and similar responses within each category.
These neurons were identified using the following criteria. First, a
multiple linear regression was performed with the discharge rate
of a cell (in a sliding window of 250 ms in steps of 25 ms) as
dependent variable, and the categorical choice of monkeys, the
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duration of the test stimulus, and the trial outcome (correct/
incorrect) as factors. We performed this analysis during the delay
period, the reaction and movement times, and during the inter-
trial period. Nevertheless, since most of the category-related
activity showed a significant effect during the delay epoch (Sup-
plementary Fig. 12), we focused our analysis of category-selective
cells on this epoch. We calculated two additional measures that
determined the association between the neural activity and the
monkeys' choices for the same sliding windows. One is the
choice-probability index43, which indicates the proportion of
behavioral responses that can be predicted from the neuron's
activity. In addition, a contingency table was calculated between
the decoded and the observed monkey’s choices across all trials
and a χ2-test was performed on this table (Methods section). A
cell was considered category selective when: (1) the categorical
choice factor was significant in the permutation test (p < 0.05) of
the multiple linear regression model for at least two consecutive
sliding windows during the delay period; (2) the choice prob-
ability index was above 0.6; and (3) the χ2-test was significant (p
< 0.05). Figure 7a illustrates a category-selective neuron recorded
during the T1 block. The activity of this neuron showed a sig-
nificant increase during the delay epoch for trials selected as
“short” by the animal. Furthermore, its choice probability index
was 0.91, the χ2-test was x2= 54.43 (p < 0.001, 96 trials), and the

psychometric and neurometric functions had very similar sig-
moidal profiles (Fig. 7b; neural PSE: 362.10; neural DL: 43.57;
behavioral PSE: 356.75; behavioral DL: 55.22). We also found
another group of category-selective neurons that showed the
opposite pattern, namely, their activity was significantly higher
when the intervals were categorized as long (Supplementary
Fig. 9a–f). Considering both monkeys, 134, 146, and 104
category-selective neurons showed higher activity for short
intervals during T1, T2, and T3, respectively (Fig. 7c, and Sup-
plementary Fig. 9). Of these, 89 neurons were category selective
for two or more blocks of stimuli. In turn, 113, 92, and 71
category-selective neurons showed higher activity for long inter-
vals during T1, T2, and T3 (Supplementary Fig. 9) and 64 neu-
rons were category selective for two or more blocks of stimuli.

A further important feature is the moment at which these cells
started to show category-selective activity, whereas, the neurons
that preferred the short category increased their activity after the
presentation of the second stimulus (Fig. 7a, c and Supplementary
Fig. 9a-f), the long-preferring population tended to do so even
before the interval offset. This effect, which was stronger in
monkey 1, makes sense if, as we have argued, monkeys were
comparing a representation of the block’s boundary to the
interval presented on each trial: long intervals could have been
correctly categorized as soon as the elapsed time exceeded the
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limit between categories, whereas a second stimulus arriving
before the peak of the boundary neurons would signal a short
category. Indeed, this temporal difference in the emergence of
category-selective activity was also observed in our model (Fig. 6b)
These results indicate that a large population of pre-SMA cells
parametrically encoded the trial by trial categorical decision of the
monkeys throughout the end of the stimulus period and the delay
of the categorization task. Crucially, in these periods of the task
the monkeys could not predict the location of the targets used to
communicate their categorical decision. Therefore, the category-
selective neurons were tightly related to the categorical choices of
the monkeys without the contamination of the intention to
perform a reaching movement toward a particular location.

Neural activity related to the trial's outcome. Finally, we found
neurons whose activity during the inter-trial interval (ITI) of the
categorization task was modulated by the presence or absence of
reward after the previous choice. These neurons were called
outcome-selective cells and showed the following response
properties: the outcome factor was significant (p < 0.05) in the
permutation test of the multiple linear regression model described
above, the outcome probability index, which represents the pro-
portion of trials for which the outcome can be decoded from the
neuron's activity (see ONLINE METHODS and Supplementary
Fig. 10a–d), was above 0.6, and the χ2-test on the contingency
table between the actual and decoded outcomes across all trials
was significant (p < 0.05). Figure 8a illustrates the activity of an
outcome-selective neuron whose activity was larger during
incorrect trials for all the test intervals of block T1. The corre-
sponding outcome probability index was 0.96 and the χ2-test was
x2= 66.79 (p < 0.001, 96 trials), supporting the notion that this

neuron’s activity was tightly modulated by the trial outcome.
Neurons with the opposite pattern of activity, showing higher
activity during the ITI for correct trials, were also recorded (see
the mean population response in Supplementary Fig. 11). From
both monkeys, 293, 250, and 191 neurons showed higher ITI
activity for incorrect trials in T1, T2, and T3, respectively. Of
these, 232 neurons remained outcome-selective for two or more
blocks of stimuli. In turn, 83, 100, and 56 neurons showed higher
ITI activity for correct trials in T1, T2, and T3, respectively
(Fig. 8b and Supplementary Fig. 11a-f) and 52 neurons main-
tained outcome selectivity for two or more blocks of stimuli. The
number of incorrect-related neurons was statistically larger than
the number of correct-related cells (X2

(1) =135.01, p < 0.001). A
Kruskal–Wallis test was performed to determine whether the
‘outcome’ neurons showed additional selectivity for short or long
intervals (Methods section). For both monkeys, 0% of the correct-
selective outcome neurons and only the 0.74 % of the incorrect-
selective outcome neurons showed statistical differences in their
response for short and long intervals. Hence, there is no inter-
action between the neural encoding of the outcome and the
categorical decision.

An important property of the outcome cells is that the correct-
selective cells were recruited earlier than incorrect-selective
neurons, which emphasizes a differential role of these two
populations (Fig. 8c). Finally, it is important to mention that the
outcome related activity was not associated with the oculomotor
behavior of the monkeys during the inter-trial period. We
employed a multiple linear regression model to account for
possible eye position effects (see Experimental procedures,
equation 2), and found that only a small percentage of outcome
cells (4% monkey 1 and 5.47% monkey 2) lost their selectivity
when considering the eye position behavior. In sum, these results
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suggest that some pre-SMA neurons maintained a representation
of the consequences of the previous choice during the ITI, with a
differential processing for correct and incorrect trials.

Sequential organization of neural responses. Throughout the
trial, the neural representation of the categorical boundary, the
category selected by the monkeys, and the trial outcome emerged
sequentially in the population of pre-SMA neurons (Fig. 9a–c and
Supplementary Fig. 12a-d). The boundary was encoded near the
end of the interval presentation (Figs. 2a, b, 4a, b, 5, 9a–c). In
turn, the category-related activity emerged at the end of the test
intervals and during the delay (Figs. 7a, c, 9a–c, Supplementary
Figs. 9a-f and 12a-d). Finally, outcome-related activity was
observed during the movement times and the inter-trial period
(Figs. 8a, b, 9a–c, Supplementary Figs 11a–f and 12a–d). While
the subjective boundary was encoded through the moment of
occurrence of the peak of activity, the category and outcome were
represented by a firing rate code modulated by the corresponding
task parameter. Notably, some individual neurons encoded more
than one parameter (Supplementary Fig. 13). For example, the
neuron in Fig. 7a showed increased activity for short categorical
responses during the delay epoch and also showed a larger acti-
vation for incorrect trials during the intertrial period (the blue
SDF in the 319 and 331 ms panels and the red SDF in the 369,
381, and 450 ms panels of Fig. 7a). Similarly, we found that some
boundary neurons sequentially encoded more than one para-
meter. Supplementary Fig. 14, for an example, shows a boundary
neuron with an additional selectivity for the categorical choice
during the delay.

Discussion
To clarify the neural mechanisms underlying flexible time cate-
gorization, we recorded the activity of pre-SMA neurons of
Rhesus monkeys performing a relative interval categorization
task. Given that there were three possible blocks of intervals, the
task implied a redefinition of category memberships and
boundaries every time a new block was presented. Notably, to
avoid confounding neural activity related to motor planning/
execution with that related to category membership, we carefully
designed a way for the monkeys to communicate their decision
without any particular movement direction being associated at all
with a particular decision. Our psychophysics analysis indicated
that monkeys indeed attended the duration of the test intervals to
solve the task and successfully changed their categorical boundary
within recording sessions to correctly categorize the test intervals
of the different blocks of stimuli. Accordingly, the neurophysio-
logical data showed that pre-SMA cells encoded the boundary
between categories by reaching a constant peak of activity close to
the limit between the short and long intervals. This implied that
the location of this activity peak differed according to the location
of the categorical boundary of the current block, and showed an
activation profile that could explain the trial-by-trial categorical
performance of the animals. Indeed, our analyses suggest that
monkeys categorized the test intervals by comparing the neural
representation of the categorical boundary with the time of
occurrence of the stimuli indicating the interval offset. We
demonstrated that a neural-network model following this strategy
solved the categorization task and replicated the monkeys’ psy-
chometric performance. Furthermore, the results showed that
single cells in pre-SMA parametrically represented the category
selected by the animals and the outcome of the monkeys’ deci-
sions. All this information was encoded throughout the trial in a
sequence that matched the cognitive requirements of the task. We
discuss our results in a broader context below.

Boundary neurons encoded the boundary between short and
long categories during the presentation of the test interval by
reaching their peak activity at the subjective boundary between
short and long intervals for a block of trials. Thus, within a trial
block there was a systematic variation between the moment at
which the activity peak was reached and the presentation of the
second stimulus. For short test intervals, this activity peak tended
to occur after the second stimulus; whereas, for long intervals it
usually occurred before it, closely following the location of the
monkey’s subjective limit between categories. Remarkably, at the
population level, the internal boundary representation changed
when monkeys categorized the intervals of different blocks of
stimuli. Most of the cells encoded the boundary for only one
block, although a subgroup of cells shifted their boundary
representation in more than one block. Thus, the neural repre-
sentation of boundary ‘moved’ along the ‘line of time’, adapting to
the behavioral context. We hypothesized that an optimal reader
can use the population activity of boundary cells and compare it
to the occurrence of the second stimulus in order to categorize an
interval in a specific block of stimuli. Whereas the information
about the occurrence of the second stimulus can be a sensory one,
as modeled here, this could also be a timing signal in the form of
ramping neurons30,35 or cells tuned32 for intervals in the hun-
dreds of milliseconds range, as has already been described in the
pre-SMA. In fact, we observed some ramping neurons in this task
as well (not reported). It is then likely that the interval duration
coded by these cells, in conjunction with the population activity
of the ‘boundary neurons’, allowed for the trial by trial decoding
of the category selected by the monkeys. Our neural-network
model demonstrated the feasibility of this mechanism.

The present findings agree with one of the most discussed
theories for explaining perceptual categorization, the decision-
bound theory (DBT)1, one version of which proposes that the
stimulus is compared with a decision criterion that represents the
subjective category boundary1,46,47. Previous studies using an
interval categorization (bisection) task have suggested that such
decision boundary corresponds to a value near the mean interval
of the durations tested20–22. Since in our experimental design the
value of the category boundary and the mean duration are cor-
related across the blocks of stimuli, it is difficult to entirely dis-
sociate whether the boundary cells encoded the mean duration of
a block or the subjective boundary. Nevertheless, two results
support the hypothesis that the boundary cells encoded the
subjective category boundary. First, from the activity of these cells
we were able to decode with high fidelity the categorical decision
made by the monkeys on a trial by trial basis. The key piece of
information is the temporal relation between the peak of neural
activity of the boundary cells and the timing of the second sti-
mulus, and this occurred well in advance of the monkey’s motor
response (for some trials 1500–2000 ms before the monkeys’
response). Additional support to this idea comes from the
observation that the variation in the psychometric point of sub-
jective equality from experiment to experiment was accompanied
by a shift in the peak of the population of boundary cells, closely
following the monkeys’ biases. In contrast, the stimulus mean
duration remained constant. To our knowledge, this is the first
time that a single-neuron correlate of a category boundary is
described, which, moreover, is flexibly and quickly adapted to
changing category definitions within a single recording session6,7.
These results provide neurophysiological support to many psy-
chophysics and EEG studies in humans in favor of the DBT for
time categorization21,22,47.

Based on our neurophysiologic observations, we built a model
that implements the categorization process as a mechanism that
selects the short category when the neural response to the second
stimulus occurs first, or the long category when the peak activity
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of the boundary cells occurs first. In latter case, the long category
signal should emerge before the presentation of the second sti-
mulus. Several anatomical and neurophysiological studies point
to the neostriatum, specifically the putamen, as the best candidate
for implementing this comparison. First, the putamen interacts
with pre-SMA through the motor cortico-basal ganglia-thalamo-
cortical circuit (CBGTc), a circuit involved in the control of
voluntary skeletomotor movements and in the perceptual and
motor aspects of timing31,34,48–52. Second, the putamen has pri-
vileged access to visual information since it receives inputs from
almost all visual cortical areas53 and from regions of the thalamus
in which a high proportion of neurons signal the onset of
behaviorally relevant visual stimuli54. Third, several studies have
shown transient striatal neural responses to behaviorally relevant
visual stimuli with latencies as short as 40 ms55,56. Therefore, the
putamen is the area that could be performing the comparison
between the short latency neural response to the second stimulus
and the activity of the boundary cells, and could be sending the
categorical signal back to the pre-SMA through the CBGTc.
Future simultaneous recordings in the striatum and pre-SMA are
needed to test our hypothesis. A second possibility is that this
comparison is done in the medial premotor cortex itself, using a
more complex timing signal instead of a sensory one. In this case,
the activity of neurons that ramp as a function of the interval
duration30,35 could compete against that of the boundary cell
population, giving rise to a short decision if the ramping neurons
reach their peak first or to a long decision otherwise.

We also found single-pre-SMA neurons that showed category-
selective activity that allowed the trial by trial decoding of the
monkey’s responses. We observed neurons tuned to both short
and long categories. This category-selective activity was mainly
observed during the delay epoch. Nevertheless, at the population
level, strong long-category selectivity emerged before the interval
offset. In contrast, short-category selectivity was more robust after
the interval offset. These findings suggest that monkeys were able
to assign the category membership before the offset of the long-
test intervals, a hypothesis that has been also proposed for
humans22. Moreover, the mean latencies of category-selective
activity for the long intervals were similar to the mean times of
peak activity of the boundary neurons, supporting the proposition
that the neural boundary was employed for deciding the category
membership of the intervals. Additionally, it is important to
emphasize that the observed category-related activity cannot be
attributed to motor planning or execution, given that in our task,
the communication of the categorical decision was not tied to a
particular response direction. Consequently, monkeys could not
plan the response movement until the end of the delay, once
targets had been presented, whereas the category-related activity
emerged well before target presentation.

Finally, we found that during the inter-trial period, the activity
of some neurons discriminated correct from incorrect trials, an
observation that has been reported for other cortical areas as
well57,58. We hypothesize that the signal conveyed by these
cells could have an effect on the current representation of the
neural boundary, which should be reflected in the monkey’s trial
by trial performance. Neurons with larger activity for correct
trials were recruited earlier than incorrect-selective neurons,
probably because their activity was associated to reward delivery.
However, the population of neurons responding to incorrect trials
was significantly larger, suggesting that more weight was being
given to this signal for the trial by trial adjustment of the sub-
jective between-categories boundary. Neural-network models of
categorization have conferred great importance to reward infor-
mation23 and future studies will shed light on our hypotheses.
Our observation coincides with intra-cerebral recording, fMRI,
and ERP studies showing that the SMA/pre-SMA is part of a

frontal-medial system for the evaluation of the outcome of
actions59–63.

In sum, we demonstrated that single-pre-SMA neurons
sequentially encoded all the relevant information needed for
solving the interval categorization task. During interval pre-
sentation, we found signals representing the subjective boundary
needed for assigning the different intervals to the corresponding
categories. Importantly, we provided a putative mechanism for
how this boundary representation was employed by the brain to
categorize the different intervals. In addition, we observed that
single-pre-SMA neurons represented, during the delay and inter-
trial periods, respectively, the category selected by the monkeys
and the outcome of the perceptual decision. Finally, we propose
that the consequence of the monkey’s decision, encoded by
outcome-related neurons, could serve to adjust the neural
boundary representation in order to improve task performance.
We will analyze this possibility in future reports.

Methods
Animals. Two male Rhesus monkeys (Macaca mulatta): monkey 1 (5.5 kg BW)
and monkey 2 (7.2 kg BW) were tested. All the experimental procedures were
approved by the National University of Mexico Institutional Animal Care and Use
Committee and conformed to the principles outlined in the Guide for Care and
Use of Laboratory Animals (NIH, publication number 85–23, revised 1985).

Materials. During task performance, the monkeys were seated in a primate chair
with their head and left arm restrained. The gaze position was measured with an
infrared tracking system (ISCAN, Inc., Woburn, MA, USA). Visual stimuli were
presented in a computer monitor (HP7540, 160 Hz refresh rate) 56 cm away from
the monkey’s eyes. The task required that monkeys manipulated a joystick (H000E-
NO-C, CTI electronics, Stratford, CT, USA) to control the position of the cursor on
the screen.

Task. The details of the task have been presented previously2,26. Briefly, monkeys
were trained to categorize the interval between two visual stimuli as either ‘short’ or
‘long’ according to previously learned prototypes. Figure 1a shows the temporal
sequence of a trial. A circle containing a fixation point was shown in the center of
the screen. The animal started the trial by staring and keeping his gaze within a
circular window with a diameter of 4° of visual angle which was centered at the
fixation point and by placing and maintaining the cursor inside the central circle.
After a variable waiting period (500+ Δ 1000 ms) two parallel bars (8° × 0.7° of
visual angle) separated by constant distance (6° of visual angle) appeared briefly
(50 ms), disappeared during a particular test interval, and reappeared in the same
position. The first and second stimulus presentation indicated, respectively, the
beginning and the end of the test interval. While the duration of the test interval
changed from trial to trial, the position of the bars was always the same. After a
fixed delay (1000 ms for monkey 1 and 500 ms for monkey 2) two response targets
(orange and blue circles), were presented (Fig. 1a, b). Monkey 2 had a lower
performance with a delay of 1000 ms, hence, we set it at 500 ms in this animal.
Importantly, across trials, both response targets could occupy one of eight possible
locations on the periphery of the screen, which precluded the contamination of the
categorization process by the intention to move to a particular place in space
(Fig. 1b). The monkeys were trained to move the cursor from the central circle to
the orange target if the test interval was short or to the blue target if it was long.
The monkey received a juice reward immediately after correct responses. The
amount of reward was adjusted to be proportional to the block of durations being
categorized (see ref. 2). The inter-trial interval (ITI) was 1500 ms. Eye fixation was
enforced from the beginning of the trial until target presentation, when monkeys
were allowed to break fixation.

Stimuli and task procedures. Three blocks of stimuli (T1, T2, and T3), each
containing eight different intervals and different between-categories boundaries,
were employed. The first four intervals of every block were considered “short”
(Fig. 1c) and the remaining “long”. Furthermore, some durations were present in
two blocks but belonged to a different category in each case, emphasizing the
context-dependent nature of categorization. Consequently, within recording ses-
sions, the monkeys were forced to flexibly change their subjective limit between
categories to successfully categorize the intervals of different blocks. All the
intervals of each block were randomly (monkey 1) or pseudo-randomly (monkey
2) presented. For every block of stimuli, the monkey had a training and a testing
phase. The first 24 trials of a block of trials constituted the training phase in which
only the shortest and the longest intervals of each block were presented in an
alternate fashion (12 repetitions per interval). Importantly, in this phase the color
of the stimulus bars was orange when the short interval was presented and blue for
the long interval. Consequently, it matched the color of the correct response target,
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and defined the short and long prototypes to be memorized for this block. The
following 96 trials constituted the test phase in which every one of the eight stimuli
of the current block was presented 12 times. Crucially, the color of the stimulus
bars during this phase was green regardless of the stimulus category, so the animals
required to remember the prototypes and/or an implicit limit or boundary interval
to solve the task. In every recording session, the three test blocks (T1, T2, and T3)
were randomly presented to the monkey.

Surgery. Recording chambers (8 mm inner diameter) were implanted over the left
pre-SMA and DLPF cortex of monkey 1 and 2 during aseptic surgery under
Sevoflurane (1–2%) gas anesthesia. In monkey 1, after recording the neural activity
in the left hemisphere, the chambers were surgically moved to the right pre-SMA
and DLPF cortex. Chamber positions were determined on the basis of structural
MRI (Supplementary Fig. 2). Titanium posts for head restraining were also
implanted. Broad spectrum antibiotics (Enrofloxacin, 5 mg/kg/day, i.m.) and
analgesics (Ketorolac 0.75 mg/kg/6 h or Tramadol 50–100 mg/4–6 h, i.m.) were
administered for 3 days after surgery.

Neuronal recordings and spike sorting. The extracellular activity of neurons in
the pre-SMA was recorded with quartz-insulated tungsten microelectrodes (1–3
MΩ) mounted in multielectrode manipulators (Eckhorn System, Thomas
Recording, GMbH, Giessen, Germany). All neurons were recorded regardless of
their activity during the task and the recording site changed from session to ses-
sion. Spike waveform data were sorted off line (Plexon Offline Sorter, v3.0. Plexon
Inc. Dallas, TX, USA, monkey 1) or online employing window discriminators
(Blackrock Microsystems LLC, Salt Lake City, UT, USA, monkey 2).

Behavior. For every monkey and block of trials, we calculated a psychometric
curve as the logistic fit to the probability of categorizing each interval of the
corresponding block of stimuli as long (‘p long’, all fits with p < 0.05). From every
curve, we calculated the difference limen (DL) as half the subtraction of the interval
at ‘p long’= 0.75 and at ‘p long’= 0.25. Similarly, the point of subjective equality
(PSE) was the interval at ‘p long’= 0.5 64. The CE was computed as the difference
between the PSE and the implicit (theoretical) limit between categories for every
block of stimuli. Additionally, we computed the reaction time defined as the
interval between the time of presentation of the response circles and the moment in
which the monkey moved the cursor out of the central circle.

General neural activity. Subroutines written in Matlab (Matworks v. 7.6.0.324)
and the SPSS statistical package (version 20, SPSS Inc., Chicago, IL, 2011) were
used for the statistical analyses. The level of statistical significance to reject the null
hypothesis was α= 0.05.

Cell stability. We used previously validated criteria to assess the single-unit sta-
bility during the performance of the different blocks of the time categorization task
by measuring the similarity of the average spike waveforms and the interspike
interval histograms (ISIHs)31,42. The stability threshold used was 10.5, which was
reported as an appropriate value in chronic single-cell recordings42. From the total
of cells (259 of Monkey 1 and 620 of Monkey 2), 816 cells showed a similarity
scoreI below the 10.5 threshold in at least two consecutive blocks (196 of monkey 1
and 620 monkey 2), and were considered stable for these blocks.

Up–down activity around the test interval. We used an iterative algorithm to
detect the up–down profile of instantaneous activity for each interval of the three
blocks. This algorithm has the following steps. Step 1: spike times were convoluted
with a Gaussian kernel (σ= 30 ms) to obtain the SDF for each trial, including the
500 ms control period, the test interval, and 500 ms of the delay period (Fig. 3a).
Step 2: SDF was aligned to the first stimulus presentation. Step 3: the time of the
activity peak was identified along the interval and delay periods (Orange circle
Fig. 3b). Step 4: the minimum activity time was found (Green circles, Fig. 3b), and a
regression was performed between the minimum and peak times. The activity
minimum could be located before or after the peak, defining ramps with positive or
negative slopes, respectively (Fig. 3c). Step 5: regressions were carried out
decreasing, in steps of 20 ms, the interval from the minimum activity to the peak
time (Blue lines Fig. 3b). Step 6: we considered that the algorithm reached con-
vergence when the regression R2 decreased by less than 5% on subsequent itera-
tions. Step 7: The best regression model in terms of adjusted R2 was found (Black
lines Fig. 3c). Step 8: a ramp was defined when its peak was above 8 Hz, the
duration was longer than 100 ms, and the linear regression had a p < 0.01. Finally, a
cell was considered a boundary neuron if it fulfilled three conditions: (1) an
up–down ramp was detected in at least 5 of the 8 test intervals of a block using the
SDF across trials; (2) the magnitude peak of the SDF across trials was above 8 Hz;
and (3) the peak activity of the cells showed no significant effects on τ as a function
of test interval (ANOVA, p > 0.05), computed from the trial by trial up–down
activity. We performed the previous analysis using different analysis windows: (1)
an analysis window including the categorized interval plus 500 ms after the second
stimulus, (2) a constant window of 700 ms before and after the second stimulus
across durations and blocks on the original boundary cells, and (3) a window of

fixed size across test intervals (the longest test interval of each block plus 500 ms
before and after) and aligned to the first stimulus.

It is important to notice that using a window of constant length across test
intervals and blocks that includes the largest test interval of the block T3 (i.e., 1520
ms) yields uninterpretable results for block T1. The shortest interval of T1 is 200
ms; consequently, a detection window of 1520 ms covers the test interval, the delay
(which in monkey 1 is 1000 ms and in monkey 2 is 500 ms) and large part of the
reaction time and movement time periods of the task, especially in monkey 2 (see
Fig. 1 and Supplementary Figure 1). Consequently, the utilization of windows of
constant size across blocks will lead to the detection of responses that could be
associated with the categorical boundary, the categorical decision, the targets
presentation, and the preparation and execution of the reaching movement in T1.
Crucially, the results from the new analysis of block T3 support the notion of a shift
in the activity peak of boundary cells across blocks. The analysis in this block
included a constant analysis window of 500 ms before (control period) to 2020 ms
after the first stimulus. In this case, the analysis had the sensitivity to detect activity
peaks that are quite smaller than the values around the implicit interval (1195 ms).
Yet, the algorithm found peaks above 768.8 ms, with no overlap with the peak time
obtained in the block T1 (T1 mean and SD: 424.56 and 64.91 ms; T3 mean and SD:
1088.01 and 136.04 ms; Supplementary Fig. 5b). Indeed, with this analysis we
found 24 neurons that were considered boundary cells in blocks T1 and T3 which
showed significant shifts of activity peak between blocks (Wilcoxon signed-rank
test; p < 0.05).

On the other hand, in order to test whether a cell encoding the boundary in one
block was likely to encode the boundary in the other blocks in which it was stably
recorded, we performed a χ2-test on a contingency table. We asked the question “if
one neuron is a boundary cell in a block T(small), is the same neuron likely to be a
boundary cell in a block T(large)?”. Neurons stably recorded in 3 blocks
contributed 3 comparisons: T1 vs T2, T1 vs T3 and T2 vs T3.

Decoding category membership from boundary neuron's activity. We con-
structed neurometric curves employing the activity of boundary neurons to cate-
gorize intervals as short or long in a trial by trial basis. We first quantified the
elapsed time (τ) between the peak of activity and the occurrence of the second
stimulus for each of the trials with the eight test intervals. Next, we found the value
(decoding criterion) that minimized the error to classify the stimuli as short or long
short based on τ. Finally, a neurometric curve was constructed by computing the
probability that the neuron chose a test interval as “short” or “long” based on the
number of trials that were above or below this decoding criterion (Fig. 4c–e). A
contingency table and a χ2-test was performed between decoded and the observed
monkey’s choices across all trials. The level of significance to reject the null
hypothesis was α= 0.05. We also computed an analog of the choice probability
index43,44, which indicates the proportion of behavioral responses that can be
predicted from τ values. This index acquires values between 0 and 1; where 1
indicates a perfect separation between the τ distributions for short and long
responses. This choice probability index was “signed”, namely, positive τs were
associated with a short choice and negative τs were associated with a long choice,
producing a choice probability >0.5 (Fig. 4d). A ROC curve was calculated from the
neural and behavioral data of the four intermediate intervals in a block, those with
a balanced relation between short and long categorical decisions. All neurons with
a Choice Probability index larger than 0.6 were considered selective. Alternatively,
for each cell and block of stimuli, we also calculated a mean from the indexes
calculated separately for each of the four intervals. A paired t-test did not find
significant differences between the indexes calculated by the two methods (indexes
from grouped intervals: mean= 0.698 SD= 0.077; indexes from individual inter-
vals: mean= 0.686 SD= 0.081; t(129)= 1.59 p= 0.11).

Neural selectivity to interval, categorical choice, and reward outcome. The
activity of the stable cells was subjected to two analyses. The first one was an
ANCOVA that used the discharge rate during the delay, the reaction-movement
time, or the intertrial period as the dependent variable, the discharge rate during
the key holding control epoch as the covariate, and the test interval, categorical
choice (short/long), and reward outcome (correct/incorrect) as the factors.A total
of 685 cells (164 monkey 1 and 521 monkey 2) showed significant effects in at least
one factor and for at least one task epoch. These cells were analyzed further in the
following multiple linear regression model using sliding windows of 250 ms with
steps of 25 ms:

r ¼ β0 þ β1Mþ β2Cþ β3O: ð1Þ

where r is the discharge rate of the cell, M is the duration of the test interval, C is
the categorical choice (short/long), and O is the reward outcome (correct/incor-
rect). We used a permutation test (100 iterations) to determine the significance
level for each coefficient in the model. For each neuron, neural responses were
permuted 100 times across the 12 trials and 8 test intervals for each sliding window.
The multiple regression was computed for each permutation to obtain a ‘null’
distribution of p-values. The multiple regression was considered significant if the
non-permuted p-value was lower than the p-value from the ‘null’ distribution at
95% of confidence. The sliding windows were run through the delay with cell
responses aligned to the second stimulus, through the reaction and movement time
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aligned to the target presentation, and during the intertrial period aligned to the
reward time. A cell was considered to have a significant effect from one of the
coefficients if the permutation test of two consecutive sliding windows was p < 0.05.
It is important to mention that a detailed collinearity analysis (SPSS collinearity
tests) was performed between M, C, and O, with no evidence of collinear inter-
actions between the three factors.

We calculated two additional measures of the association between neural
activity and the monkey's choices for the same sliding windows employed in the
multiple linear regression model: (1) the choice-probability index indicates the
proportion of behavioral responses that can be predicted from the neuron's
activity43,65,66. This measure quantifies the overlap between two neural response
distributions, in this case between short and long responses. For each neuron, we
constructed two firing rate distributions, one associated to short and another
associated to long responses. We restricted the analysis for the intermediate
intervals, for which the animals had a probability of error between 0.3 and 0.7 (i.e.,
the third to sixth time intervals of each block, see Fig. 1c, d). We employed these
distributions to calculate an ROC curve. A resulting value of 0.5 indicates a full
overlap, whereas a value of 1 indicates a complete separation between the short and
long response distributions. Therefore, the choice-probability index determines the
selectivity of a neuronal response to short or long categorical decisions. All neurons
with a choice probability larger than 0.6 were considered selective. (2) In addition,
a contingency table and a χ2-test was employed to measure the interrelation
between the monkey’s actual response and the response decoded from the
discharge rate of a cell across all trials was calculated as follows. For every neuron
and block of trials we found the FR value (criterion) that best delimited the FR
distributions associated to short and long choices. Next, the criterion was employed
to categorize each trial as ‘short’ or ‘long’ on the basis of the corresponding
observed neural activity. Finally, a χ2-test was performed on the contingency table
calculated between the decoded and the observed monkey’s choices across all trials
a block. The level of significance to reject the null hypothesis was α= 0.05.

For neurons with a significant effect on the trial outcome, it was necessary to
account for the neural signals related to eye position since monkeys could move
their eyes freely after response circles presentation. For that purpose, we carried out
a multiple linear regression analysis between the time-varying single cell activity
and eye position. The model was de following:

ft� ¼ β0 þ βixt þ β2yt ; ð2Þ

where ft is the SDF at time t–Δ, with Δ from 0 to 200 ms, β0 is a constant, β1 is the
regression coefficient of the x coordinate of the eye position at time t, β2 is the
regression coefficient of the y-coordinate of the eye position67. For outcome cells
with significant regressions (p > 0.05), we evaluate the relation between the residual
(with respect to eye position) and the magnitude of stimulus, the selected category
and the trial's outcome in the multiple linear regression model described in
equation (1). Only 14 from 124 outcome selective cells in monkey 1 and 34 from
392 outcome selective cells in monkey 2 showed significant effect of eye position.
From these, 4 cells from monkey 1 and 23 from monkey 2 lost outcome selectivity
after accounting for the effect of eye position.

On the neurons with a significant effect of the trial outcome according to the
multiple linear regression, we calculated a measure analogous to the choice-
probability index: the “error-probability index”. This index measured the distance
between the FR distributions associated to correct and incorrect trials. In addition,
we performed a χ2-test on the contingency table calculated between the actual
response outcomes (correct/incorrect) and the outcome decoded from the neural
activity across all trials of a block (Supplementary Fig. 9). To test whether outcome
neurons show additional category selectivity, a Kruskal–Wallis test and a Dunn-
Sidak post hoc test compared their mean firing rate for correct/short, correct/long,
incorrect/short and incorrect/long trials. In this analysis, the mean firing rate of the
bins with outcome related activity during the inter-trial interval was employed. The
level of significance to reject the null hypothesis was α= 0.05.

Neural-network model. Two independent networks composed of 800 excitatory
and 200 inhibitory integrate-and-fire neurons were simulated. The cells were
sparsely randomly interconnected with a probability of 0.05, and the synaptic
weights between neurons were randomly distributed (Fig. 6a, center). Both net-
works received input pulses that drove: (1) an AMPA excitatory current that could
trigger a paired-pulsed facilitation process, and (2) a GABAb slow inhibitory
current. We included these currents since neural networks, including them have
the ability to process time information in the range of hundreds of milliseconds68.

The sensory network received two pulses separated by one of the test intervals
of the categorization task. The boundary network also received two pulses, but in
this case the time between the pair of pulses was drawn from a Gaussian
distribution mimicking the up–down profile of activation of the boundary cell
population (Fig. 5).

PCA was used to reduce the high-dimensional activity of the recurrent network
activity69. Thus, instead of using time-varying responses of sensory and boundary
networks, we used the first principal component and the two principal components
of the sensory and boundary network responses, respectively. PCA was computed
on the binned activity (10 ms bins) for the excitatory neurons of both networks
separately, using the responses across the eight test intervals. The resulting neural
trajectories were analyzed using a linear classifier in order to determine whether a

test interval was short or long based on the path of the trajectory for each
simulation (total simulations 50; Fig. 6a right; Supplementary Fig. 8d). Thus, neural
population trajectory of each simulation was categorized as long if the linear
combination:

ws1rs1 tð Þ þ wb1rb1 tð Þ þ wb2rb2 tð Þ þ c>0; ð3Þ

and short otherwise (Fig. 6a right). rs1, rb1 and rb2 are the trajectory values at
time t of the first PC from the sensory and the two PC from boundary network,
respectively. ws1, wb1, wb1 and c were the sensory, boundary, and constants
weights70, respectively. Therefore, the linear classifier determined the plane in the
PCA space that could divide short and long intervals according to equation (3).
The discrimination plane (gray plane Fig. 6a right; Supplementary Fig. 8d) allowed
to compute the probability of long interval classification based on the activity of the
two networks in the PCA space (Supplementary Fig. 8d). Thus, networkmetric
functions at time (t) were built using the probability of long interval categorizations
by the linear classifier across simulations for each test interval (Fig. 6d). We
optimized the time t (called threshold decision time; black arrow in the inset of
Supplementary Fig. 8a), as well as the ws1, wb1, wb1 to minimize the mean squared
error between networkmetric and psychometric functions across all test intervals.
Since the threshold decision time was close to the categorical boundary, the
classifier plane for short test intervals occurred after the stimulus presentation,
namely, before the threshold decision time (Supplementary Fig. 8b). In contrast, for
long test intervals the classifier plane occurred at the threshold decision time
(Supplementary Fig. 8c).

Neuron model. Neurons were modeled as Integrate-and-Fire units. Each cell was
characterized by the membrane potential V. When V reached the threshold value of
Vt= 20 mVan action potential was triggered, which was followed by a membrane
potential of Vr= 0 mV during a refractory period of tr= 1 ms. The membrane
potential dynamics followed the equation:

τ
dV
dt

¼ �V þ IFac � IGABAb þ Irec þ N; ð4Þ

where τ is the time constant of the neural membrane71,72, which was τ= 5 for
excitatory neurons and τ= 10 for inhibitory neurons. IFac, IGABAb were the driving
input currents that provided information about the test interval to each neuron. Irec
is the recurrent current in network and included a AMPA and GABAa compo-
nents, corresponding to the excitatory and inhibitory recurrent inputs of the net-
works73. Finally, N(t) is the white noise of the system with a standard deviation σN.

Input currents. Input currents changed the membrane potential for each cell with
temporal dynamics that obeyed the following equations:

τr;type
dItype
dt

¼ �Itype þ Rtype ð5Þ

τd;type
dRtype

dt
¼ �Rtype þ wtypeδ t � ttype

� �
; ð6Þ

where Itype is the current and Rtype is a recovery variable. τr,type and τd,type are the
rise and decay time constants of each current type, and wtype is the synaptic efficacy
of the input stimulus presented at time ttype. The driving input currents were
AMPA and GABAb; whereas, the recurrent currents were AMPA and GABAa. The
time constants were: τr,AMPA= τr,GABAb= 0.2, τd,AMPA= τd,GABAb= 0.7, τr,GABAb
= 21 and τd,GABAb= 500 ms. Each synaptic current was activated by action
potentials, represented in the form of Dirac δ functions74.

Each synaptic current was activated by two pulses separated by the test interval
for the sensory network and a Gaussian-distributed interval for each cell and trial
of the boundary network.

Short term plasticity. The model also included plastic facilitation processes, where
the amplitude of the synaptic efficacy of AMPA currents changed upon the
repeated presentation of stimuli75. This property can be modeled as a release
probability prel(t). Between pairs of stimuli, this probability follows the equation:

τP
dprel
dt

¼ P0 � prel; ð7Þ

where τP= 700 ms is the time constant and P0= 0.17 is the stable release prob-
ability. In this model, prel changed its value immediately after of the appearance of
an input action potential following the rule prel ! prel þ fP 1� prelð Þ (fP= 0.62).
Therefore, the synaptic weight in equation (−5) for current IFac was multiplied by
factor prel

P0
(see ref. 76).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03482-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1098 | DOI: 10.1038/s41467-018-03482-8 |www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Received: 10 May 2017 Accepted: 16 February 2018

References
1. Ashby, F. G. & Maddox, W. T. Human category learning. Annu. Rev. Psychol.

56, 149–178 (2005).
2. Mendez, J. C., Prado, L., Mendoza, G. & Merchant, H. Temporal and spatial

categorization in human and non-human primates. Front. Integr. Neurosci. 5,
50 (2011).

3. Gouvêa, T. S. et al. Striatal dynamics explain duration judgments. Elife 4,
e11386 (2015).

4. Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control
judgment of time. Science 354, 1273–1277 (2016).

5. Seger, C. A. & Miller, E. K. Category learning in the brain. Annu. Rev.
Neurosci. 33, 203–219 (2010).

6. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical
representation of visual stimuli in the primate prefrontal cortex. Science 291,
312–316 (2001).

7. Freedman, D. J. & Assad, J. A. Experience-dependent representation of visual
categories in parietal cortex. Nature 443, 85–88 (2006).

8. Roy, J. E., Riesenhuber, M., Poggio, T. & Miller, E. K. Prefrontal activity
during flexible categorization. J. Neurosci. 30, 8519–8528 (2010).

9. Goodwin, S. J., Blackman, R. K., Sakellaridi, S. & Chafee, M. V. Executive
control over cognition: stronger and earlier rule-based modulation of spatial
category signals in prefrontal cortex relative to parietal cortex. J. Neurosci. 32,
3499–3515 (2012).

10. Freedman, D. J. & Miller, E. K. Neural mechanisms of visual categorization:
insights from neurophysiology. Neurosci. Biobehav. Rev. 32, 311–329 (2008).

11. Romo, R., Ruiz, S., Crespo, P., Zainos, A. & Merchant, H. Representation of
tactile signals in primate supplementary motor area. J. Neurophysiol. 70,
2690–2694 (1993).

12. Romo, R., Merchant, H., Zainos, A. & Hernández, A. Categorical perception of
somesthetic stimuli: psychophysical measurements correlated with neuronal
events in primate medial premotor cortex. Cereb. Cortex 7, 317–326 (1997).

13. Romo, R., Merchant, H., Ruiz, S., Crespo, P. & Zainos, A. Neural activity of
primate putamen during categorical perception of somaesthetic stimuli.
Neuroreport 6, 1013–1017 (1995).

14. Merchant, H., Zainos, A., Hernández, A., Salinas, E. & Romo, R. Functional
properties of primate putamen neurons during the categorization of tactile
stimuli. J. Neurophysiol. 77, 1132–1154 (1997).

15. Antzoulatos, E. G. & Miller, E. K. Differences between neural activity in
prefrontal cortex and striatum during learning of novel abstract categories.
Neuron 71, 243–249 (2011).

16. Rishel, C. A., Huang, G. & Freedman, D. J. Independent category and spatial
encoding in parietal cortex. Neuron 77, 969–979 (2013).

17. Merchant, H., Crowe, D. A., Robertson, M. S., Fortes, A. F. & Georgopoulos,
A. P. Top-down spatial categorization signal from prefrontal to posterior
parietal cortex in the primate. Front. Syst. Neurosci. 5, 69 (2011).

18. Merchant, H., Crowe, D. A., Fortes, A. F. & Georgopoulos, A. P. Cognitive
modulation of local and callosal neural interactions in decision-making. Front.
Neurosci. 8, 245 (2014).

19. Cromer, J. A., Roy, J. E. & Miller, E. K. Representation of multiple,
independent categories in the primate prefrontal cortex. Neuron 66, 796–807
(2010).

20. Wearden, J. H. & Ferrara, A. Stimulus spacing effects in temporal bisection by
humans. Q. J. Exp. Psychol. B 48, 289–310 (1995).

21. Ng, K. K., Tobin, S. & Penney, T. B. Temporal accumulation and decision
processes in the duration bisection task revealed by contingent negative
variation. Front. Integ. Neurosci. 5, 77 (2011).

22. Lindbergh, C. A. & Kieffaber, P. D. The neural correlates of temporal
judgments in the duration bisection task. Neuropsychologia 51, 191–196
(2013).

23. Engel, T. A., Chaisangmongkon, W., Freedman, D. J. & Wang, X. Choice-
correlated activity fluctuations underlie learning of neuronal category
representation. Nat. Commun. 6, 6454 (2015).

24. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. A. Comparison of
primate prefrontal and inferior temporal cortices during visual categorization.
J. Neurosci. 23, 5235–5246 (2003).

25. Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K. & Poggio, T.
Dynamic population coding of category information in inferior temporal and
prefrontal cortex. J. Neurophysiol. 100, 1407–1419 (2008).

26. Mendez, J. C., Perez, O., Prado, L. & Merchant, H. Linking perception,
cognition, and action: psychophysical observations and neural network
modelling. PLoS ONE 9, e102553 (2014).

27. Macar, F., Coull, J. & Vidal, F. The supplementary motor area in motor and
perceptual time processing: fMRI studies. Cogn. Process 7, 89–94 (2006).

28. Macar, F. et al. Activation of the supplementary motor area and of attentional
networks during temporal processing. Exp. Brain Res. 142, 475–485 (2002).

29. Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y. & Tanji, J. Interval time
coding by neurons in the presupplementary and supplementary motor areas.
Nat. Neurosci. 12, 502–507 (2009).

30. Merchant, H., Zarco, W., Pérez, O., Prado, L. & Bartolo, R. Measuring time
with different neural chronometers during a synchronization-continuation
task. Proc. Natl Acad. Sci. USA 108, 19784–19789 (2011).

31. Merchant, H., Harrington, D. & Meck, W. H. Neural basis of the perception
and estimation of time. Ann. Rev. Neurosci. 36, 313–336 (2013).

32. Merchant, H., Pérez, O., Zarco, W. & Gámez, J. Interval tuning in the primate
medial premotor cortex as a general timing mechanism. J. Neurosci. 33,
9082–9096 (2013).

33. Merchant, H. & Averbeck, B. B. The computational and neural basis of
rhythmic timing in medial premotor cortex. J. Neurosci. 37, 4552–4564 (2017).

34. Perez, O., Kass, R. & Merchant, H. Trial time warping to discriminate
stimulus-related from movement-related neural activity. J. Neurosci. Methods
212, 203–210 (2013).

35. Crowe, D. A., Zarco, W., Bartolo, R. & Merchant, H. Dynamic representation
of the temporal and sequential structure of rhythmic movements in the
primate medial premotor cortex. J. Neurosci. 34, 11972–11983 (2014).

36. Méndez, J. C., Rocchi, L., Jahanshahi, M., Rothwell, J. & Merchant, H. Probing
the timing network: a continuous theta burst stimulation study of temporal
categorization. Neuroscience 356, 167–175 (2017).

37. Gibbon, J., Malapani, C., Dale, C. L. & Gallistel, C. R. Toward a neurobiology
of temporal cognition: advances and challenges. Curr. Op. Neurobiol. 7,
170–184 (1997).

38. Merchant, H., Zarco, W. & Prado, L. Do we have a common mechanism for
measuring time in the hundred of milliseconds range? Evidence from multiple
interval timing tasks. J. Neurophysiol. 99, 939–949 (2008).

39. Jones, M. R. & Mcauley, J. D. Time judgments in global temporal contexts.
Percept. Psychophys. 67, 398–417 (2005).

40. Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing.
Nat. Neurosci. 13, 1020–1026 (2010).

41. Ashby, F. G., Boynton, G. & Lee, W. W. Categorization response time with
multidimensional stimuli. Percept. Psychophys. 55, 11–27 (1994).

42. Dickey, A. S., Suminski, A., Amit, Y. & Hatsopoulos, N. G. Single-unit stability
using chronically implanted multielectrode arrays. J. Neurophysiol. 102,
1331–1339 (2009).

43. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A.
A relationship between behavioral choice and the visual responses of neurons
in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

44. Hernández, A. et al. Decoding a perceptual decision process across cortex.
Neuron 66, 300–314 (2010).

45. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale
neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

46. Perez, O. & Merchant, H. The synaptic properties of cells define the hallmarks
of interval timing in a recurrent neural network. J Neurosci. 369, 20120460
(2017).

47. Maddox, W. T. & Ashby, F. G. Comparing decision bound and exemplar
models of categorization. Percept. Psychophys. 53, 49–70 (1993).

48. Allan, L. G. & Gerhardt, K. Temporal bisection with trial referents. Percept.
Psychophys. 63, 524–540 (2001).

49. Coull, J. T., Cheng, R. K. & Meck, W. H. Neuroanatomical and neurochemical
substrates of timing. Neuropsychopharmacology 36, 3–25 (2011).

50. Bartolo, R. & Merchant, H. β oscillations are linked to the initiation of
sensory-cued movement sequences and the internal guidance of regular
tapping in the monkey. J. Neurosci. 35, 4635–4640 (2015).

51. Bartolo, R., Prado, L. & Merchant, H. Information processing in the primate
basal ganglia during sensory-guided and internally driven rhythmic tapping. J.
Neurosci. 34, 3910–3923 (2014).

52. Merchant, H., Bartolo, R. Primate beta oscillations and rhythmic behaviors. J.
Neural. Transm. 125, 461-470 (2018).

53. Mendoza, G. & Merchant, H. Motor system evolution and the emergence of
high cognitive functions. Prog. Neurobiol. 122, 73–93 (2014).

54. Saint-Cyr, J. A., Ungerleider, L. G. & Desimone, R. Organization of visual
cortical inputs to the striatum and subsequent outputs to the pallido-nigral
complex in the monkey. J. Comp. Neurol. 298, 129–156 (1990).

55. Matsumoto, N., Minamimoto, T., Graybiel, A. M. & Kimura, M. Neurons in
the thalamic CM-Pf complex supply striatal neurons with information
about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976
(2001).

56. Kimura, M. Behavioral modulation of sensory responses of primate putamen
neurons. Brain Res. 578, 204–214 (1992).

57. Apicella, P., Scarnati, E. & Schultz, W. Tonically discharging neurons of
monkey striatum respond to preparatory and rewarding stimuli. Exp. Brain
Res 84, 672–675 (1991).

58. Schall, J. D., Stuphorn, V. & Brown, J. W. Monitoring and control of action by
the frontal lobes. Neuron 36, 309–322 (2002).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03482-8

16 NATURE COMMUNICATIONS |  (2018) 9:1098 | DOI: 10.1038/s41467-018-03482-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


59. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by
the anterior cingulate cortex during saccade countermanding. Science 302,
120–122 (2003).

60. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role
of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

61. Bonini, F. et al. Action monitoring and medial frontal cortex: leading role of
supplementary motor area. Science 343, 888–891 (2014).

62. Phillips, J. M. & Everling, S. Event-related potentials associated with
performance monitoring in non-human primates. NeuroImage 97, 308–320
(2014).

63. Zarr, N. & Brown, J. W. Hierarchical error representation in medial prefrontal
cortex. Neuroimage 124, 238–247 (2016).

64. Gescheider, G. A. Psychophysics: the Fundamentals 3rd edn (Lawrence
Erlbaum Associates, New Jersey, 1997).

65. Romo, R., Hernández, A. & Zainos, A. Neuronal correlates of a perceptual
decision in ventral premotor cortex. Neuron 41, 165–173 (2004).

66. Romo, R., Hernández, A., Zainos, A., Lemus, L. & Brody, C. D. Neuronal
correlates of decision-making in secondary somatosensory cortex. Nat.
Neurosci. 5, 1217–1225 (2002).

67. Merchant, H., Battaglia-Mayer, A. & Georgopoulos, A. Neural responses
during interception of real and apparent circularly moving targets in motor
cortex and area 7a. Cortex 14, 314–331 (2004).

68. Karmarkar, U. R. & Buonomano, D. V. Timing in the absence of clocks:
encoding time in neural network states. Neuron 53, 427–438 (2007).

69. Jolliffe, I. T. Principal Component Analysis(Springer Series in Statistics,
Springer, New York, 2002).

70. Yuan, G. X., Ho, C. H. & Lin, C. J. Recent advances of large-scale linear
classification. Proc. IEEE 100, 2584–2603 (2012).

71. Brunel, N. & Van Rossum, M. C. Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biol. Cybern. 97, 337–339 (2007).

72. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252 (1997).

73. Amit, D. J. & Brunel, N. Dynamics of a recurrent network of spiking neurons
before and following learning. Netw.: Comput. Neural Syst. 8, 373–404 (1997).

74. Destexhe, A., Mainen, Z. F. & Sejnowski, T. J. Synthesis of models for excitable
membranes, synaptic transmission and neuromodulation using a common
kinetic formalism. J. Comput. Neurosci. 1, 195–230 (1994).

75. Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic
synapses. Neural Comput. 10, 821–835 (1998).

76. Dayan, P., Abbott, L. F. Theoretical Neuroscience, Vol. 806 (Cambridge, MA.
MIT Press 2001).

Acknowledgements
We thank Ranulfo Romo, Robert Hampton, Pavel Rueda, and Dobromir Dotov for their
fruitful comments on the manuscript. We thank Raul Paulín and Juan José Ortiz for their
technical assistance. Supported by CONACYT: 236836, CONACYT: 196, and PAPIIT:
IN202317, SECITI 222 grants to H.M. G.M. is a doctoral student from Programa de
Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
(UNAM) and received a fellowship 164310 from CONACYT.

Author contributions
Conceived and designed the experiments: H.M., and J.C.M. Performed the experiments:
G.M., J.C.M., L.P., and H.M. Analyzed the data: H.M., G.M., and O.P., Wrote the paper:
H.M., G.M., J.C.M., and O.P. All the authors reviewed and approved the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03482-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03482-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1098 | DOI: 10.1038/s41467-018-03482-8 |www.nature.com/naturecommunications 17

https://doi.org/10.1038/s41467-018-03482-8
https://doi.org/10.1038/s41467-018-03482-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Neural basis for categorical boundaries in the primate pre-SMA during relative categorization of time intervals
	Results
	Interval categorization task
	Behavior
	Neurophysiology
	pre-SMA neurons represent the boundary between categories
	Decisions are predicted on every trial from boundary neurons
	Boundary neural population activity
	A recurrent neural-network model of boundary cells
	Category-selective neurons
	Neural activity related to the trial's outcome
	Sequential organization of neural responses

	Discussion
	Methods
	Animals
	Materials
	Task
	Stimuli and task procedures
	Surgery
	Neuronal recordings and spike sorting
	Behavior
	General neural activity
	Cell stability
	Up–nobreakdown activity around the test interval
	Decoding category membership from boundary neuron's activity
	Neural selectivity to interval, categorical choice, and reward outcome
	Neural-network model
	Neuron model
	Input currents
	Short term plasticity
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




