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We determined the encoding properties of single cells and the decoding accuracy of cell populations in the medial premotor cortex (MPC)
of Rhesus monkeys to represent in a time-varying fashion the duration and serial order of six intervals produced rhythmically during a
synchronization-continuation tapping task. We found that MPC represented the temporal and sequential structure of rhythmic move-
ments by activating small ensembles of neurons that encoded the duration or the serial order in rapid succession, so that the pattern of
active neurons changed dramatically within each interval. Interestingly, the width of the encoding or decoding function for serial order
increased as a function of duration. Finally, we found that the strength of correlation in spontaneous activity of the individual cells varied
as a function of the timing of their recruitment. These results demonstrate the existence of dynamic representations in MPC for the
duration and serial order of intervals produced rhythmically and suggest that this dynamic code depends on ensembles of interconnected
neurons that provide a strong synaptic drive to the next ensemble in a consecutive chain of neural events.
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Introduction
A rhythm can be defined as a regular and repeated pattern of
movement and sound, and it is considered a supramodal entity
fully determined by both its sequential and time information
(Merchant and Honing, 2013). We can recognize and reproduce
a large number of rhythms, suggesting that individual rhythms
can be internally represented; however, the neural mechanisms
underlying representation of rhythms are not understood. In
contrast, the neural underpinnings of motor sequential behavior
and of interval timing have been separately investigated. For ex-
ample, the medial premotor cortex [MPC; supplementary motor
area (SMA) and pre-SMA] is considered a critical node in the
control of movement sequences. Cells in this area increase in
activity before a specific sequence of three movements or between
particular pairs of movements during the push—pull–turn task
(Tanji and Shima, 1994). MPC also shows responses associated
with the serial order of a movement (i.e., first, second, or third
movements) regardless of the sequence structure (Clower and

Alexander, 1998). In addition, imaging studies have implicated
the MPC as a fundamental area for temporal information pro-
cessing during motor-timing tasks involving single or multiple
intervals (Rao et al., 1997; Wiener et al., 2010). Single cells re-
corded from MPC encode the duration and the context in which
intervals are produced during motor-timing tasks (Mita et al.,
2009). Indeed, the activity of MPC cells was recorded in a recent
neurophysiological study using a synchronization-continuation
task (SCT), where monkeys tapped on a push-button to produce
six isochronous intervals in a sequence. The results showed that
the tapping behavior in the SCT may depend on the cyclic inter-
play between different neuronal chronometers in MPC that
quantify in their instantaneous activity the time passed and the
remaining time for an action (Merchant et al., 2011). MPC cells
are also tuned to the duration of the produced intervals in this
task and all possible preferred intervals are represented in the cell
population, suggesting that this area has an abstract representa-
tion of time (Merchant et al., 2013a). Finally, cells in MPC can be
tuned to both the serial order and the duration of the intervals
produced rhythmically (Merchant et al., 2013a).

A strong position in the timing literature is the notion that
the quantification of time is a dynamical and computational
ability of all cortical circuits, and that it may be performed
locally. This view, based on network simulations and in vitro
experiments, implies that cortical networks can tell time as a
result of time-dependent changes in synaptic topology and
cellular biophysics, which influence the population response
to behavioral events in a history-dependent manner (Kar-
markar and Buonomano, 2007; Goel and Buonomano, 2014).
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Thus, a critical and unresolved question is whether the cells
that are tuned to serial order and/or interval show dynamical
interactions that may define the temporal and sequential
structure of rhythmic behavior. Here we determined the
encoding properties and the decoding accuracy of small en-
sembles of interconnected MPC cells to reconstruct in a time-
varying fashion the duration and serial order of the six
intervals produced during the SCT.

Materials and Methods
General. All the animal care, housing, and experimental procedures were
approved by the National University of Mexico Institutional Animal
Care and Use Committee and conformed to the principles outlined in the
Guide for Care and Use of Laboratory Animals (NIH, publication num-
ber 85-23, revised 1985). The two monkeys (Macaca mulatta, both males,
5–7 kg BW) were monitored daily by the researchers and the animal care
staff, and every second day from the veterinarian, to check the conditions
of health and welfare. To ameliorate their condition of life we routinely
introduced in the home cage (1.3 m 3) environment toys (often contain-
ing items of food that they liked) to promote their exploratory behavior.
The researcher that tested the animals spent half an hour per day inter-
acting with the monkeys directly, giving, for example, new objects to
manipulate.

SCT. The SCT has been described in detail previously (Zarco et al.,
2009; Merchant et al. 2011). On each trial, the monkey tapped a button
seven times in succession (producing six intervals) with the goal of main-
taining a constant intertap interval duration across all taps. (In this paper
we refer to the time period between taps as “intervals” and to the amount
of time between taps as “interval duration” or “duration.”) The first four
taps were made synchronously with a repetitive cue stimulus (either a
visual stimulus presented on a computer monitor or an auditory tone).
The monkey then had to tap the button three more times with the same
intertap duration as instructed by the cues (Fig. 1). Five different intertap
durations were used: 450, 550, 650, 850, and 1000 ms. During the record-
ing of each group of cells (one “set”), the monkey performed five repeti-
tions of each duration (for a total of 25 trials), with durations randomly
ordered within each repetition. Trials were separated by an intertrial time
of 1.2– 4 s.

Neural recording. The extracellular activity of single neurons in the
medial premotor areas was recorded using a system with seven indepen-
dently movable microelectrodes (Merchant et al., 2001; 1–3 M�, Uwe
Thomas Recording). All the isolated neurons were recorded regardless of
their activity during the task, and the recording sites changed from ses-
sion to session. At each site, raw extracellular membrane potentials were
sampled at 40 kHz. Single-unit activity was extracted from these records
using the Plexon off-line sorter (Plexon). Structural MRI was used to
localize the recording sites (Merchant et al., 2011). An initial ANOVA

using the discharge rate during the key-holding (control) period as a
dependent variable, and the recording time across all trials of the SCT as
a factor, was performed for each neuron to identify cells whose activity
changed significantly during the recording. A significant variation of
baseline rate across trials was taken to indicate instability of the cell’s task

Figure 2. Illustration of serial-order decoding analysis. A, Each trial consisted of six produced
intertap intervals (colored bars S1–C3) per duration. Monkeys performed five trials in each set.
B, To decode serial order during the intertap interval, we divided each interval into equally
spaced bins and collected observations at each bin across six intervals and five trials. Thus, at
each bin, we obtained 30 observations. We used the patterns of activity of 352 cells to decode
the serial order of each of the 30 observations. On each iteration of the decoding, we trained the
decoder at one bin and used the resulting classification functions to decode serial order at all
bins. We repeated this process using each bin as the training bin, providing one decoding time
course for every bin. The proportion of observations correctly classified at each bin is an indica-
tion of how reliably patterns of activity across the population vary as a function of serial order. C,
By training the decoder at a particular bin (dashed lines) and classifying at all other bins (solid
lines), we were able to test whether the representation of serial order was static over time or
dynamic. If patterns of neural activity that represent different serial orders remain the same
across the intertap interval (Static representation, top), decoding accuracy should be consistent
across all bins, no matter which bin was used to train the decoder. If serial order was represented
by different patterns of activity at different times (Dynamic representation, bottom), then de-
coding should be highest at bins nearest the training bin.

Figure 1. Illustration of an SCT. Monkeys were required to push a button (r, gray line) each
time stimuli with a constant interstimulus interval duration (s, black line) were presented,
which resulted in a stimulus-movement cycle. After four consecutive synchronized movements,
the stimuli stopped and the monkeys continued tapping with a similar interval duration for
three additional intervals. Hence, six intertap intervals were generated by the monkeys in each
trial. The instructed durations, defined by brief auditory or visual stimuli, were 450, 550, 650,
850, and 1000 ms, and were chosen pseudorandomly within a repetition.
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responsiveness, and, therefore, these cells were excluded from further
analyses. Of a total of 1570 cells recorded in the MPC in both monkeys
(1267 of Monkey 1 and 303 of Monkey 2), 1083 did not show a statisti-
cally significant effect of recording time during the control period and
were analyzed further. It is important to clarify that the 1083 cell dataset
used in the present manuscript was analyzed before (Merchant et al.,
2011, 2013a). In one paper we described the ramping activity of cells
during the SCT and a serial-reaction time control task (Merchant et al.,
2011), and in the other we reported the tuning properties of MPC cells to
the duration and serial order, using the discharge rate of cells across all
the intervals (Merchant et al., 2013a), without any analysis of the time-
varying activity and functional coupling of cells across the intertap
intervals.

Selection of significant cells. We selected for further analysis those cells
whose firing rates during each interval were significantly related to either

the serial order of the interval or interval duration, using a two-way
ANOVA that included as factors the Serial Order, Interval Duration, and
Serial Order � Duration interaction. Cells were included if their activity
was significantly related to serial order or duration in this ANOVA at a
threshold of p � 0.05; 352 and 298 of 1083 cells met this inclusion
criterion for serial order and duration, respectively, and were used in the
subsequent analyses.

Mutual information analysis. For each cell, we calculated the mutual
information (MI) of its firing rate and the serial order or duration of the
interval, at each time bin. MI of the cell’s firing rate in a bin (r) and the
serial order of the interval ( I) was computed as follows:

MI�r, I� � �
r,I

p�r, I�log2� p�r, I�

p�r� p�I��

Figure 3. Activity of sample cells, averaged across intertap interval durations using normalized bins (20 bins per interval for all durations). A, Left, Shows the average firing rate (across 30 trials)
of a neuron whose activity varied as a function of the serial order of intertap interval. Vertical lines indicate tap events. The three Synchronization intervals (S1–S3) and three Continuation intervals
(C1–C3) are indicated under the x-axis. Right, Shows the average firing rate (solid line) and MI of firing rate and serial order (dashed line), within the intertap interval, across 180 observations (30
trials � 6 serial orders). B, C, Activity of two other cells with activity significantly related to serial order. Maximum possible MI � 2.58 bits.
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where p(r, I ) is the joint probability of r and I, p(r) is the probability of a
particular spike rate across all rates for that cell during that bin, and p( I)
is the probability of each serial order or duration: 0.167 (1/6) for serial
order and 0.2 (1/5) for duration (Nelken et al., 2005).

Decoding sequence serial order within an intertap interval. We used a
pattern classification analysis (“classify” function in the MATLAB Statis-
tical Toolbox; MathWorks) to decode the serial order of each produced
interval (Crowe et al., 2010). First, we divided each trial into time bins
such that each interval contained 20 time bins (Fig. 2A). This meant that
if the monkey perfectly matched an instructed interval duration, each bin
of an instructed 450 ms interval would be 22.5 ms long (450/20 � 22.5),
each bin of the 550 ms instructed interval would be 27.5 ms long, and so
on. Since monkeys actually produced a range of intervals, the time bins
on any particular produced interval were usually slightly shorter or lon-
ger than if a perfect interval had been produced. We then calculated the
firing rate of each of the 352 significant neurons within each bin. We used
the pattern of firing rates across all 352 serial-order cells to decode which
of six serial-order positions (1– 6, representing the three Synchronization
intervals and three Continuation intervals) that the bin had been re-
corded from, as follows. First, we organized the neural data at each bin
into observations, defined as a repetition of a particular bin within one of
the six intervals within a trial, across all 25. Thus, at each time bin there
were 150 observations of serial-order position (25 trials each of serial
orders 1– 6; Fig. 2B). We collapsed across serial orders, since this variable
changed within a trial, allowing us to compare population activity across
serial orders during a canonical intertap interval. Using these observa-

tions, we determined the degree to which neu-
ral activity represented serial order by
classifying each observation as one of the six
serial orders, based on the pattern of firing
rates across the population of cells. In this anal-
ysis, 4/5 of the observations were used as train-
ing data to obtain an average pattern of activity
across the neural population for each serial or-
der. The activity pattern recorded on each of
the remaining 1/5 of observations was then
compared with each of the average patterns,
and that observation was classified as the serial
order with the closest matching average pat-
tern. The percentage of observations correctly
classified was an indication of the strength with
which the neural population represented serial
order. This process was repeated four more
times such that every observation was classified
at each bin. We then repeated this analysis at
each time bin, initially using training and test-
ing observations from the same time bin (i.e.,
classifications were based on the match be-
tween patterns of activity on different observa-
tions all taken from the same bin within a
produced interval). This produced an overall
decoding time course, which shows the
strength of serial-order representation from
the start of a produced interval to its end.

To determine whether the representation
of serial order was dynamic, we extended the
above analysis by training the decoder on
one bin, and using the average patterns of
activity thus generated, classified observa-
tions taken from all 20 bins within the inter-
val. If the same patterns of neural activity
were associated with serial orders across the
entire interval, decoding accuracy should re-
main unaffected by testing at different bins
from where the training data were obtained
(Fig. 2C, Static). Alternatively, if the repre-
sentation of serial order was dynamic, pat-
terns of activity that could be used to
successfully decode serial order at one time
would fail to provide information at other

times in the trial, and decoding accuracy would decrease at these other
times (Fig. 2C, Dynamic). We tested this by training the decoder with
4/5 of observations from one time bin and decoding 1/5 of the obser-
vations at each of 20 bins in the interval, and then repeating this
cross-validation four more times until all observations were classi-
fied. We iterated this analysis by using each of the 20 bins as a training
set, producing 20 decoding time courses, each with one bin used to
train the classifier. This analysis was repeated for observations at each
interval (450 –1000 ms) separately, using 20 bins every time (bin sizes
thus ranged from 22.5 to 50 ms). Illustrated decoding time courses
were smoothed using a low-pass filter with a cutoff of 5/interval (e.g.,
11 Hz for the 450 ms duration, 5 Hz for the 1000 ms duration).

Decoding interval duration. We decoded the interval duration across all
time bins within all the trials with a method analogous to that used for
decoding serial order, using the population of 298 duration cells. At each
bin, we classified each of 25 trials into one of five interval durations. As
with the serial-order decoding, we trained our classifier at a particular
bin, and then decoded duration at all bins to obtain a decoding time
course. We iterated this procedure so that all bins in a trial were used as
training bins.

Baseline correlation of subsets of cells participating in serial-order or
duration representation. To determine which cells were contributing to
the successful decoding of serial order or duration at each normalized
time bin, we computed a MI time course and compared it to the decoding
time courses produced by training the decoding algorithm at each of the

Figure 4. The activity of serial-order cells across interval durations (20 bins per interval). A, The average firing rate of a
serial-order neuron, across the five instructed intertap durations (5 trials per duration). Vertical lines indicate tap events. Synchro-
nization (S1–S3) and Continuation (C1–C3) intervals are indicated under the x-axis. B, The MI time courses for a serial-order
neuron, across the five durations (30 observations– 6 serial orders � 5 trials–per point). MI tended to peak late in the interval at
all durations (maximum possible MI � 2.58 bits). C, Gaussian curves were fit to each cell’s MI time course, at each duration (e.g.,
the lines in B). We calculated the SEM of the peaks of these curves (in bins), for each cell, across durations. The histogram shows
these SEM values; lower values indicate cells with similar peaks across durations (e.g., the cell in B). Data are from 169 cells with at
least two successful Gaussian fits with peaks in the bin range.

Crowe et al. • Dynamic Representation of Time and Sequence J. Neurosci., September 3, 2014 • 34(36):11972–11983 • 11975



normalized bins (20 and 10 bins per interval
for serial order and duration analyses, respec-
tively). The MI analysis provides a measure in-
dicating how each cell’s activity regularly varies
across durations or serial orders (Nelken et al.,
2005). The decoding analysis above likewise
detects consistent variation in activity across
serial orders or durations, but does so at the
population level. For each decoding time
course produced, we found a set of neurons
with similar MI time courses by computing the
correlation between the two time courses. Spe-
cifically, we correlated each cell’s MI time
course with all decoding time courses, each pro-
duced by training the decoding algorithm at a
particular time bin. A cell was defined as part of
the subset contributing to decoding at bin B if its
MI time course was significantly correlated (p �
0.0001) with the population decoding time
course trained at bin B.

We measured the correlation of baseline
activity of cell pairs selected in the above
analysis. For each possible lag in assigned bin
(0 –19 for serial order, 0 –59 for duration),
we found all cell pairs with that lag [e.g., for
bin lag of 5, Cell A (bin 1) and Cell B (bin 6)
form a pair, Cell C (bin 13) and Cell D (bin
18) form another]. We then correlated pre-
trial activity (the 400 ms before the trial)
across trials for each cell pair, and calculated
the percentage of cell pairs with a significant
( p � 0.05) correlation, across simultane-
ously recorded cells (points in Fig. 8 A, B)
and nonsimultaneously recorded cells (aver-
age percentage of cells significant shown by
dashed line in Fig. 8 B, C). Since cells could be
assigned to more than one bin, it is possible
for a cell pair’s pretrial correlation to be
counted for more than one bin lag. Because of
the difficulty of finding simultaneously re-
corded cells at the many bin lags available in the
analysis of duration cells, we used larger nor-
malized bins (10 per interval) in this analysis to
improve our signal.

Results
Two monkeys performed an SCT (Fig. 1)
wherein they tapped a key in time with
four evenly spaced visual or auditory
stimuli (synchronization phase) and then
continued to tap three more times with
same duration (continuation phase).
Hence, six intervals were produced in
each trial. Five instructed intertap dura-
tions were used: 450, 550, 650, 850, and
1000 ms. In each set of trials, the monkeys
performed five repetitions of each inter-
tap duration. The monkeys were able to
accurately produce the instructed inter-
vals, showing an average underestimation
of �50 ms across durations in the SCT
(Merchant et al., 2013a). In addition, the
temporal variability of the monkeys’ tap-
ping performance (defined as the SD of
the individual inter-response intervals)
increased linearly as a function of duration.
Hence, the monkeys showed appropriate

Figure 5. The activity of a duration cell, using normalized bin across durations (20 bins per interval). A, The average firing rate
of a neuron whose activity varied as a function of the intertap interval duration, at each duration (5 trials per duration). Conventions
as in Figure 2. B, Activity averaged across durations, compared with the MI of this cell’s firing rate and intertap interval duration
(across 25 trials–5 trials � 5 durations). Maximum possible MI � 2.32 bits.

Figure 6. Dynamic activity within populations of serial-order and duration cells. A, Average normalized firing rate of
cells with activity significantly related to serial order, aligned to bin of maximum rate. Each intertap interval was divided
into 20 bins. Vertical lines indicate tap events. Synchronization (S1–S3) and Continuation (C1–C3) intervals are indicated
under the x-axis. Data averaged over 25 trials. B, Average normalized firing rate of cells with activity significantly related
to duration, aligned to bin of maximum rate. Each intertap interval was divided into 20 bins. All data are collapsed across
durations and averaged over 25 trials.
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tempo performance in the SCT (Zarco et al., 2009; Merchant and
Honing, 2013).

We analyzed the activity of 1083 MPC neurons during the
SCT. Of these, 352 had activity that varied significantly (p � 0.05)
with the serial order of the intertap interval (i.e., whether it was
the first, second, etc., interval; “serial order cells”). Figure 3, left,
shows the activity of three serial-order cells. In this and subse-
quent analyses, we normalized across all five durations by divid-
ing each interval into 20 bins; in this case we then averaged firing
rate across all trials. In addition to the variation in firing rate
across intertap intervals (different serial orders), these cells also
displayed peaks of activity within intervals that repeated cyclically
in other intervals. The strength with which these cells represented
serial order, as measured by MI, tended to scale with average
firing rate (Fig. 3, right). Interestingly, the peak of MI for serial
order was at different time bins for the three cells, suggesting that
the encoding of the task parameter was dynamical. Representa-
tion of serial order within each cell was similar across all intertap
durations. For example, the cell in Figure 3A is also shown in
Figure 4A, which depicts its activity averaged across all trials of
each intertap duration (20 bins per intertap interval). This cell
shows highest activity during the first Synchronization interval
(S1) and lowest activity during the first Continuation interval
(C1), at all durations. Additionally, the time within an interval
that cells’ activity was most related to serial order was also con-
sistent across durations (Fig. 4B). Indeed, the peak of the MI time
course was in a similar bin across durations, with a median SEM
of 1.1 bins across the population of serial-order cells (Fig. 4C).
These findings support the notion of the encoding of serial-order
scales across durations, showing a representation that is relative
to the total duration of the produced interval.

In addition to serial-order cells, we also found a population of
298 cells with activity that varied significantly (p � 0.05) as a
function of instructed interval duration. Figure 5 shows the aver-
age firing rate of such a duration cell with a preference for long
durations. Note that the width of the peak in rate is similar across
all durations for which the cell was active (550 –1000 ms). Since
the plot is scaled to show 20 bins per interval regardless of the
duration, this indicates that the cell was active for about the same
proportion of each interval, across all durations. As with the
serial-order cells, the strength of duration representation (MI) in
this cell peaked during periods of high firing rate (Fig. 5B) at
specific bins, not across all the interval. Interestingly, 118 cells
showed significant modulations in their activity for both serial
order and duration. Thus, it is obvious that the duration dynam-
ics depicted in Figure 5B also show that these cells have a “pre-
ferred” serial order by virtue of a peak in one of them, though

only approximately 1/3 of them are statis-
tically related to serial order.

Dynamic representation of serial-order
and interval duration
In general, cells displayed cyclical activity
patterns similar to those seen in Figures
3–5, with a large peak in activity in one of
the intertap intervals repeated in other in-
tervals, aligned to the tap events. This,
combined with cells having preferred se-
rial orders, resulted in a dynamic pattern
of activity across the population of cells.
Figure 6A shows the average normalized
firing rate of the population of serial-
order cells, aligned to the bin of peak ac-

tivity. Smaller flanking peaks occur at successive intertap
intervals (Fig. 7A). There was a dynamic activation of cells
throughout the task. A similar dynamic pattern of activation is
seen in the population of duration cells (Figs. 6B, 7B). Conse-
quently, these findings suggest that discrete neural ensembles
encode, through small time windows, the temporal and sequen-
tial structure of the SCT.

We corroborated the dynamic nature of population activity
with a decoding analysis. In separate analyses (one for serial order
and one for duration) we used the activity of cells to decode
task-relevant variables (serial order or duration) in a time-
resolved fashion using 20 equally sized bins (Crowe et al., 2010;
see Methods and Fig. 2 for a detailed description of the analysis).
The percentage correct classification of this decoding analysis
indicates the strength of representation of serial order within the
neuronal population at a particular time bin. To determine
whether the representations of serial order and duration were
dynamic or static, we trained our decoder at each bin, and de-
coded at all bins each time the decoder was trained. This gener-
ated one decoding time course for each training bin. If patterns of
neural activity representing serial order or duration remained the
same throughout the trial, then decoding accuracy should remain
relatively constant across the interval (i.e., patterns of activity
representing particular values of the variable would be the same
at the training bin as at all other bins). On the contrary, if differ-
ent patterns of neural activity represented a serial order or dura-
tion at different times within the interval (e.g., different sets of
cells were active), then decoding accuracy should be highest at the
training bin, but fall off as decoding is performed at bins farther
away. We found strong evidence that the decoding was dynamic.
Figure 8A shows six decoding time courses obtained by training
the decoding algorithm at six bins, and decoding serial order at all
bins each time. Each decoding time course displays a peak at the
training bin, and declines at further bins. For example, when the
pattern of population activity in bin four was used to train the
decoder (Fig. 8A, black dashed line), decoding was nearly 80%
accurate at that bin, but was at near chance levels at bin 20 (Fig.
8A, black curved line). Likewise, when the decoder was trained
using patterns of neural activity recorded during the 16th bin, the
decoding time course peaked later in the interval. These results
indicate that patterns of neural activity representing serial order
changed over the course of the interval. We performed the serial-
order decoding analysis separately for each instructed duration,
and found similar results across all durations. Consistently, de-
coding time courses across durations (Fig. 9A–E) displayed peaks
that were in close alignment to the training bins, as illustrated in
Figure 8. A similar relationship between decoding peak and train-

Figure 7. Average normalized firing rate of cells with activity significantly related to serial order (N � 352 cells; A) or duration
(N � 298 cells; B), aligned to bin of maximum rate. Each intertap interval was divided into 20 bins.

Crowe et al. • Dynamic Representation of Time and Sequence J. Neurosci., September 3, 2014 • 34(36):11972–11983 • 11977



ing bin was seen when we performed the decoding analysis after
combining data across all durations (Fig. 9F).

The decoding analysis also confirmed that the intertap dura-
tion was represented dynamically. Duration decoding accuracy
peaked at the training bins (Fig. 8B) and fell off away from the
training bin. Unlike with serial order, which varied within a trial,
we were able to decode duration across the entire trial. Interest-
ingly, decoding accuracy showed a cyclical pattern in which de-
coding accuracy peaked not only at training bins, but also at other
bins in the same intra-interval position. To more easily see the
dynamic representation of intertap duration we decoded dura-
tion after collapsing bins across intervals, as in the serial-order
analyses (Fig. 8C). These results suggest that duration cells are
cyclically engaged, encoding the duration across each sequential
element (S1–S3 and C1–C3) of the SCT.

Scaling of serial-order representation across durations
The shape of MI and decoding time courses provides information
about the speed at which the neural representations of serial-
order change. A sharp peak in the MI time course indicates a
narrow window over which a cell represents serial order. Simi-
larly, narrow peaks in decoding time courses indicate a rapidly
changing pattern of activity, where the training at one bin is only
good for decoding within a small temporal window. A broader
peak indicates the opposite. Figure 10 shows the width, in milli-
seconds, of Gaussian curves fitted to MI (Fig. 10A) and decoding
(Fig. 10C) time courses at each duration. Interestingly, as the
duration increased, so did the width of the time courses, indicat-
ing that cells–at both the single-cell and population level–repre-
sented serial order for a longer time at the longer intertap
durations. We measured this increase in width as a fraction of
the duration time of the instructed duration (Fig. 10 B, D).
Proportionally, time course width remained relatively stable
across all durations, indicating a scalar representation of serial
order in this task.

To further test the relationship between peaks in serial-order
representation time courses and the animals’ behavior, we per-
formed the MI analysis above after splitting the intervals into two
groups: those in which the monkeys produced an intertap time

that was below the median for that instructed duration, and those
with intertap times above the median. On those intervals in
which the monkeys tended to produce shorter intertap durations
the MI time course widths were shorter, and vice versa (Fig.
10E,F; p � 0.001, ANOVA).

Baseline correlation of simultaneously recorded neurons
We explored a possible mechanism by which different cell groups
that represent the temporal and sequential structure of rhythmic
behavior become active at different times during the SCT. For
this purpose, we used the significant correlation in baseline firing
rate of simultaneously recorded cells as an indirect measure of
neural connectivity, as suggested in previous studies (de la Rocha
et al., 2007). Our hypothesis was that cells representing serial
order or duration in adjacent bins would have a higher correla-
tion in baseline firing rate, relative to cells participating in bins
separated by a large portion of the intertap interval. To test this,
we first identified the subset of cells participating in serial-order
or duration representation at each bin as those cells whose MI
time course was significantly positively correlated with the pop-
ulation decoding time course obtained with training data at that
bin. This provided us with two groups of cells at each time bin
(one group of serial-order cells and one of duration cells) that
contributed to the overall population representation of serial or-
der or duration at that bin. We then correlated the baseline activ-
ity of all simultaneously recorded task-relevant neuron pairs, and
plotted the percentage of cells with significantly correlated base-
line activity (Fig. 11) based on the lag between the bins the cells
had been assigned. For example, for serial-order cells these lags
ranged from a lag of 0 bins, meaning the cells were participating
in the same bin, to a lag of 19 bins, meaning one cell participated
in the first bin and one participated in the last). Surprisingly, we
found that among serial-order cells baseline correlations were
highest among cell pairs with medium to long bin lags (Fig. 11A),
and among duration cells baseline correlations peaked at me-
dium bin lags, cycling up and down across intervals (Fig. 11C).
Because MI and decoding of serial order must be done across
intervals, serial-order cells were assigned bins relative to a stan-
dardized interval. Given that serial-order cells fire differentially

Figure 8. Decoding time courses. Each colored time course was generated by training the decoder at a particular bin, indicated by the vertical line of the same color, and then classifying serial
order or duration at all bins. A, Example time courses showing the time evolution of serial-order representation. Decoding performance is highest near the training bin and falls off over time,
indicating a dynamic representation. In this example, decoding was performed on trials with instructed durations of 1000 ms (�50 ms bin width), using 30 observations at each time point (5
trials � 6 serial orders). Since there were six intertap intervals, chance decoding was 17%. The horizontal dashed line indicates the average decoding performance of the decoder on 100 bootstrap
iterations of the analysis, in which serial orders were randomized. The horizontal dotted line indicates the 95th percentile of the bootstrap distribution. B, Example time courses showing dynamic
representation of intertap interval duration. Decoding performance peaks at the training bin, and shows a cyclical variation, with similar peaks in other intertap intervals (25 observations at each time
point: 5 trials � 5 durations). Since there were five durations, chance decoding was 20%. Horizontal dashed and dotted lines indicate the mean and 95th percentile of 100 bootstrap iterations
performed by randomizing duration. C, Example times courses of duration decoding when data were collapsed across intervals, as in the serial-order analysis. Dashed and dotted lines as in B.
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across intervals, it is possible that cells with assigned bins adjacent
to each other in the relative time frame may have peak firing rates
in different intervals and thus not have peak rates adjacent in
absolute time. To test whether baseline correlations varied as a
function of the distance between cells’ peak firing rates, we as-

signed serial-order cells to bins based on whether their mean
firing rate in that bin was �90th percentile of mean firing rate
across all bins. In this case, baseline correlations showed a cyclical
pattern with respect to bin lag that was similar to that seen with
duration cells (Fig. 11B).

Figure 9. Serial-order decoding time course peaks as a function of training bins, at each instructed duration. A–E, Each dot represents the peak, in time bins, of a fitted Gaussian curve to the
decoding time course obtained when the decoder was trained at the bin indicated on the x-axis (30 observations; 5 trials � 6 serial orders). Nonlinear regression was used to produce the fits. Dots
at bin zero on the y-axis represent a failure of the nonlinear regression to provide a fit. Each instructed duration (450 –1000 ms) was broken into 20 equal bins. Lines indicate a best fit of all nonzero
points. F, Decoding time course peaks when data from all durations were combined (150 observations; 5 trials � 5 durations � 6 intervals).
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Discussion
We determined the dynamic properties of MPC cells to represent
the duration and serial order of the six intervals produced during
the SCT. This was done in a time-resolved fashion, so that encod-

ing and decoding analyses were performed across equally sized
bins that defined an intertap interval among the duration and
serial-order dimensions. We found strong evidence supporting
the notion that the temporal and sequential structure of the task

Figure 10. Average serial-order MI and decoding time course widths as a function of duration. A, MI of each cell’s firing rate and serial order were calculated at each bin, separately at each
duration. Gaussian curves were fitted to each MI time course and their width parameters (in milliseconds) were averaged across cells (N � 99, 105, 110, 76, 77 curve widths for durations of 450, 550,
650, 850, and 1000 ms; these numbers vary because the nonlinear regression was not able to fit all time courses). B, The data from A are re-expressed as a fraction of an instructed interval duration.
C, D, Time-resolved population decoding of serial order was performed separately at each duration, and Gaussian curves were fitted to the resulting time courses (N � 13, 16, 15, 17, 17 curve widths
for durations 450 –1000 ms). Average widths in milliseconds shown in C and widths normalized to intertap interval shown in D. E, F, The MI analysis was repeated for intervals that were split into
those whose actual durations were above (red) and below (blue) the median for that instructed duration. All error bars 	 SEM.
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is coded in a dynamic fashion by MPC cell populations. Both the
MI of single cells and the accuracy of the neural population de-
coding showed time-varying changes, so that peaks and system-
atic decays of representation levels were observed for serial order
and duration. In addition, the width of the Gaussian decoding or
encoding time courses increased as a function of the duration of
the intervals produced in the SCT, which indicates that the neural
activity patterns representing serial order changed in a scalar
fashion across durations. Interestingly, we observed that the dy-
namic representation of serial order and duration depends on the
consecutive onset of different neural sets at different time bins
within the intertap interval. In fact, these discrete neural ensem-
bles showed significant correlations in their basal discharge rate
with the neural ensembles that are activated consecutively, sug-
gesting a strong anatomofunctional linkage inside the MPC.
Therefore, these results support the concept of a dynamic repre-
sentation of duration and serial order during the SCT, where
discrete neural ensembles encode these parameters through small
time windows. The rapid activation of neurons provides a strong
synaptic drive to the next ensemble in a consecutive chain of
neural events. The present findings could be consistent with dif-
ferent anatomical configurations.

The neural bases of the serial order of a small number of
discrete hand movements arranged in a sequence have been
deeply investigated in the behaving monkey. Single-unit record-
ing studies have found neural signals encoding the sequential
structure of such movements in the lateral prefrontal cortex
(Averbeck et al., 2003) and the basal ganglia (Kermadi and Jo-
seph, 1995). In addition, many studies have documented the
strong serial-order representation in MPC during three
movement-sequence tasks (see Tanji, 2001). Finally, the transient
inactivation of either SMA or pre-SMA by microinjection of
muscimol profoundly impairs the ability to perform a memo-
rized sequence of multiple movements correctly (Nakamura et
al., 1999). Hence, it is evident that the serial-order organization of
sequential movements depends on a neural circuit of cortical and
subcortical areas wherein MPC plays a critical role. Remarkably,
the neural circuit engaged in perceptual and motor timing shows
a large overlap with the network controlling movement se-
quences (Macar et al., 2006; Wiener et al., 2010), suggesting that

the same distributed system can encode serial-order and timing
information during rhythmic behaviors such as music and dance
(Janata and Grafton, 2003; Phillips-Silver and Trainor, 2005;
Grahn and Brett, 2007; Merchant et al., 2015).

Imaging and lesion studies have shown that the perception
and production of rhythms in human subjects depends of the
cortico-basal ganglia-thalamo-cortical circuit, where the MPC is
a crucial processing node (Sakai et al., 1999; Schubotz et al., 2000;
Merchant et al., 2008a, 2013b; Perez et al., 2013; Bartolo et al.,
2014). A tempting idea is that the dynamical representation of
serial order and duration in MPC cells observed here is also pres-
ent during rhythmic entrainment in music performance and
dance in human subjects. Although it is evident that monkeys
temporalize their behavior during the SCT (Zarco et al., 2009;
Donnet et al., 2014), some precautions should be taken when
extrapolating the neural underpinnings of rhythmic behavior
from macaques to humans, since monkeys’ asynchronies are
larger during the SCT (Zarco et al., 2009; Honing and Merchant,
2014), and macaques cannot detect the beat of complex rhythms,
although they are sensitive to the start of rhythmic groups (Hon-
ing et al., 2012).

The strong phenomenological covariation of sequence and
time, revealed by encoding and decoding algorithms, suggests
that the sequential and timing information that define a rhythmic
behavior depends on the dynamic representation of both param-
eters within the MPC. Therefore, as far as we know, we are pro-
viding the first neurophysiological evidence supporting the
dynamic nature of neural signals tuned to the serial order and
tempo of rhythmic execution. These results are concordant with
the current idea that cortical networks compute time as a result of
time-dependent changes in synaptic and cellular properties,
which influence the population response to behavioral events in a
history-dependent manner (Karmarkar and Buonomano, 2007;
Goel and Buonomano, 2014).

In the hundreds of milliseconds range, the temporal perfor-
mance across a wide range of timing tasks, including rhythmic
behaviors, follows the scalar property. This property defines a
linear relationship between the variability of temporal perfor-
mance and interval duration, in conformity with Weber’s law
(Gibbon et al., 1997; Merchant et al., 2008b). Weber’s law is given

Figure 11. Correlation in baseline firing rate for pairs of cells. A, Serial-order cells. Points represent the percentage of simultaneously recorded cell pairs that had a significant ( p � 0.05)
correlation in baseline firing rate across trials, based on their assigned bin lags. Dashed line represents the average correlation across all nonsimultaneously recorded cells pairs, across all bin lags. As
for all serial-order analyses, data are collapsed across serial order within trials. B, Baseline correlation of serial-order cells whose bin lags were assigned based on the cells’ bins of peak firing rate,
across the entire trial (all six intervals). Vertical lines indicate the tap events. Data beyond lag 55 are not shown because of high variability in the data (seen somewhat in lags 30 –55). C, Baseline
correlation of simultaneously recorded duration cells, as a function of bin lag. This analysis used intertap intervals broken into 10 bins (vs 20 used in other analyses) to reduce noise. The data go
beyond one interval since the variable, duration, was constant across an entire trial. Vertical lines indicate the tap events. Data beyond lag 55 are not shown because of high variability in the data.
All error bars � 	SE.
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as SD(T) � kT, where k is a constant corresponding to the Weber
fraction. Indeed, the coefficients of variation (�/�) or the Weber
fractions show similar values in a variety of tasks and species,
suggesting a dedicated temporal mechanism in the hundreds of
milliseconds (Ivry and Hazeltine, 1995; Merchant et al., 2008c,
2013b). The fact that the width of the Gaussian encoding and
decoding time courses for serial order increased as a function of
the duration of the intervals produced in the SCT gives evidence
in favor of a scalar representation of time during rhythmic exe-
cution. Indeed, the coefficient of variation of the MI of single cells
and the decoding time courses of cell populations were similar
across the tested duration range from 450 –1000 ms (Fig. 10),
providing, as far as we know, the first neural correlate of the scalar
property of timing during a rhythmic paradigm. Finally, the rel-
ative representation of time, showing the same encoding and
decoding of serial order and duration when the interval duration
is normalized, supports the notion that the neural mechanism for
rhythmic behavior depends on a relative representation of time,
instead of absolute timing, as suggested in fMRI studies (Teki et
al., 2011).

The representation of duration and serial order during the
SCT showed two important properties: the cells’ response dy-
namics and the modularity of the neural ensembles engaged in
this dynamics. The neural dynamics was characterized by both
the MI of single cells and the accuracy of the neural population
decoding, with clear peaks and systematic decays in the represen-
tation strength for serial order and duration. The peaks in decod-
ing at different periods of the rhythmic sequence were tightly
associated with the consecutive onset of neural sets that encoded
the serial order or duration during small time windows. Hence,
this rapid succession of different cell ensembles may generate a
chain of neural events that defined the rhythmic progression of
movements during the SCT.

Because we were able to analyze the dynamics of duration
encoding and decoding across the entire trial of six intervals pro-
duced rhythmically, we had the opportunity to determine the
cyclic changes in time representation suggesting that the duration
cells are engaged in dynamic coding of duration every time an
interval is produced in the SCT. A crucial point is that the cyclic
and dynamic entrainment of duration and serial-order cells is
accompanied by recurring baseline correlations between pairs of
cells, supporting the idea that time is represented in the trajecto-
ries of cell ensembles that show cyclical interactions across inter-
vals executed rhythmically (Buonomano and Laje, 2010).

The neuronal ensembles (representing either serial order or
duration) were probably arranged in interconnected modules
since they showed the highest baseline-activity correlations
among cell pairs with medium bin lags in a cyclic fashion. It has
been shown that significant correlations in the spontaneous ac-
tivity are indicative of synaptic relations between the simultane-
ously recorded cells (de la Rocha et al., 2007) and that neurons
with similar tuning properties tend to have correlated spontane-
ous activity. For example, neurons with similar preferred direc-
tions in primary motor cortex or preferred line orientations in
primary visual cortex, show correlated spontaneous activity and a
columnar organization (Hubel and Wiesel, 1969; Lee et al., 1998;
Kenet et al., 2003; Georgopoulos et al., 2007). Consequently, our
results support the notion of the rapid recruitment of distinct
ensembles of interconnected neurons, which provide a strong
synaptic drive to the next ensemble (Abeles, 1982). Different
anatomofunctional arrangements could explain the observed
(putative) cyclical interconnection between, including the synfire
chains, where the encoding of a behavioral feature depends on the

traveling of neural activity along a chain of neural groups
(Gewaltig et al., 2001).
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