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Abstract.13

Background: Severe traumatic brain injury (TBI), an important risk factor for Alzheimer’s disease, induces long-term
hippocampal damage and hyperexcitability. On the other hand, studies support that propylparaben (PPB) induces hippocampal
neuroprotection in neurodegenerative diseases.
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Objective: Experiments were designed to evaluate the effects of subchronic treatment with PPB on TBI-induced changes in
the hippocampus of rats.
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Methods: Severe TBI was induced using the lateral fluid percussion model. Subsequently, rats received subchronic adminis-
tration with PPB (178 mg/kg, TBI+PPB) or vehicle (TBI+PEG) daily for 5 days. The following changes were examined during
the experimental procedure: sensorimotor dysfunction, changes in hippocampal excitability, as well as neuronal damage and
volume.
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Results: TBI+PEG group showed sensorimotor dysfunction (p < 0.001), hyperexcitability (64.2%, p < 0.001), and low neu-
ronal preservation ipsi- and contralateral to the trauma. Magnetic resonance imaging (MRI) analysis revealed lower volume
(17.2%; p < 0.01) and great damage to the ipsilateral hippocampus. TBI+PPB group showed sensorimotor dysfunction that
was partially reversed 30 days after trauma. This group showed hippocampal excitability and neuronal preservation similar
to the control group. However, MRI analysis revealed lower hippocampal volume (p < 0.05) when compared with the control
group.
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Conclusion: The present study confirms that post-TBI subchronic administration with PPB reduces the long-term conse-
quences of trauma in the hippocampus. Implications of PPB as a neuroprotective strategy to prevent the development of
Alzheimer’s disease as consequence of TBI are discussed.
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INTRODUCTION33

Traumatic brain injury (TBI) induced by an exter-34

nal force causes damage to the brain and may lead35

to functional alterations [1, 2]. TBI is the lead-36

ing cause of death and disability among individuals37

under the age of 45 years. Unfortunately, an increase38

from 64 to 74 million new TBI patients is esti-39

mated during the next years [3]. TBI is associated40

with cellular metabolism alterations, excitatory neu-41

rotransmitters release, ionic cell membrane pumps42

failure, blood-brain barrier damage, prostaglandins43

and leukotrienes extravasation, and proinflammatory44

cytokines release [4–7]. All these processes con-45

tribute to the short-term consequences induced by46

TBI, such as diffuse axonal injury [8, 9], neuroin-47

flammation [10], oxidative stress [11], excitotoxicity48

[12, 13], and neuronal death [14]. TBI may also49

induce long-term consequences, such as the atrophy50

of brain areas [15, 16], neuropsychiatric disorders,51

cognitive impairment, mood disorders [17], as well52

as neurodegenerative diseases such as Parkinson’s53

disease, amyotrophic lateral sclerosis, epilepsy, and54

Alzheimer’s disease [18, 19]. It is known that TBI55

represents the most robust environmental risk factor56

for Alzheimer’s disease [20–22]. Patients with symp-57

tomatic mild TBI show white matter abnormalities58

similar to those found in the brain of patients with59

early Alzheimer’s disease [23]. Studies using exper-60

imental models revealed the aggregation of the tau61

protein and cognitive impairment, short- and long-62

term after a TBI [24].63

The development of post-TBI pathologies is64

related to lesions in brain areas such as the cerebral65

cortex, thalamus, basal ganglia, corpus callosum, and66

hippocampus [6, 25–27]. The hippocampus is highly67

susceptible to TBI [6, 25, 27]. After TBI, the hip-68

pocampus presents a significant cell loss, particularly69

in hilar and CA3 neurons [28], an effect associated70

with hyperexcitability [29–31]. At present, there is71

no evidence of neuroprotective strategies to prevent72

the development of long-term consequences induced73

by TBI [32, 33].74

Propylparaben (PPB) is an ester of p-hydroxy-75

benzoic acid frequently used as an antimicrobial76

agent against molds and yeasts [34] and as excipient77

in some drugs [35]. We found that the administration78

of PPB in rats previously submitted to pilocarpine-79

induced status epilepticus reduced the long-term80

hippocampal hyperexcitability and neuronal death81

[36]. These effects become more evident when PPB82

is combined with levetiracetam [37]. This group of83

evidence supports that PPB induces neuroprotection, 84

an effect explained because it lessens the excessive 85

release of glutamate [36] as consequence of voltage- 86

dependent sodium channel blockage [38, 39]. 87

According to this information, it is possible to sug- 88

gest that PPB will reduce the long-term consequences 89

induced by TBI in the hippocampus. The present 90

study focused on evaluating the effects of subchronic 91

administration of PPB on hippocampal excitability 92

and long-term brain damage after the induction of 93

severe TBI in rats. 94

MATERIALS AND METHODS 95

Animals 96

Male adult Wistar rats (250–300 g) were main- 97

tained individually in clear acrylic boxes under con- 98

trolled environmental conditions (12 h light/darkness 99

cycles, at 22 ± 2◦C, and 50% humidity) with access 100

to food and water ad libitum. The experimental 101

protocol was carried out following the Official Mexi- 102

can Standard (NOM-062-ZOO-1999) and the Ethics 103

Committee of the Center for Research and Advanced 104

Studies of the National Polytechnic Institute. 105

Experimental groups 106

Animals were randomly divided into the following 107

groups: 108

a) TBI+PPB group (n = 13). Under general anes- 109

thesia, animals underwent severe TBI. Three 110

hours after TBI, animals received an intraperi- 111

toneal (i.p.) injection of PPB (178 mg/kg) and 112

subsequent i.p. injections of the same dose 113

every 12 h for five days. This dose was chosen 114

based on a preliminary study in our lab- 115

oratory. We found that PPB at 178 mg/kg, 116

i.p. applied as pretreatment reduced tonic- 117

clonic convulsions in 50% of animals submitted 118

to pilocarpine-induced status epilepticus. This 119

treatment administered during the pilocarpine- 120

induced status epilepticus results in lower 121

extracellular levels of glutamate and neuronal 122

damage in hippocampus [36]. Thirty-one days 123

post-TBI, six rats were anesthetized and per- 124

fused. Hippocampal volume and damage were 125

evaluated ex vivo using magnetic resonance 126

imaging (MRI). The remaining animals (n = 7) 127

were used to evaluate hippocampal excitability 128
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Fig. 1. Timeline and experimental design to evaluate the effects of subchronic administration of propylparaben (PPB) after severe traumatic
brain injury (TBI). Bodyweight of the animals and sensorimotor function were evaluated throughout the experimental procedure. PPB or
polyethylene glycol (PEG) was administered 3 h after the TBI and repeated every 12 hours for five days. Rats previously implanted with a
bipolar electrode in the ventral hippocampus (day 23 post-TBI) were used to estimate the after-discharge threshold (ADT) (day 30 post-TBI).
On day 31 post-TBI, these animals were perfused to perform histological analysis. Another group of animals was perfused on day 31 post-TBI
for hippocampal volume and damage by ex vivo magnetic resonance imaging (MRI).

and neuronal damage. These rats underwent129

surgery to implant a bipolar electrode in the130

ventral hippocampus ipsilateral to the injury131

23 days post-TBI. Thirty days post-TBI, hip-132

pocampal excitability was evaluated through133

the estimation of the after-discharge thresh-134

old (ADT). On day 31 post-TBI, rats were135

anesthetized and perfused. The hippocampal136

neuronal population (NeuN) was evaluated in137

different areas. Bodyweight and sensorimotor138

function were evaluated at different time points139

through the experimental procedure (Fig. 1)140

b) TBI+PEG group (n = 11). Animals under-141

went the same experimental procedures as the142

TBI+PPB group, except for the administra-143

tion of vehicle (polyethylene glycol 30%, PEG)144

(1 ml/kg, i.p.) instead of PPB. Four rats were145

used for MRI analysis. The remaining ani-146

mals (n = 7) were used to evaluate hippocampal147

excitability. Four rats from this subgroup were148

used for a subsequent histological evaluation149

(Fig. 1).150

c) Sham+PPB group (n = 13). This group under-151

went the same experimental procedures as the152

TBI+PPB group, except for the TBI. Six ani-153

mals were used for MRI analysis and seven154

animals for the ADT evaluation (Fig. 1).155

d) Sham+PEG group (n = 11). Animals under-156

went the same experimental procedures as the157

Sham+PPB group, except for the administra-158

tion of PEG instead of PPB. Four animals were159

used for MRI analysis and seven animals for the160

ADT and histological evaluation (Fig. 1).

Evaluation of sensorimotor function 161

The Composite Neuroscore (NS) battery was used 162

to evaluate sensorimotor function. The NS consists 163

of four tests focused on evaluating the following 164

functions: 1) ability to stand on an inclined plane at 165

different angles (35◦ to 75◦); 2) hindlimb and 3) fore- 166

limb counter flexion during tail suspension; and 4) 167

ability to resist lateral pulsion to either side. Scoring 168

for each test ranged from 0 (complete loss of func- 169

tion) to 4 points (normal function). A total score of 170

27–28 indicates a normal condition, whereas a score 171

of 26–16 suggests mild damage, and a score ≤ 15 172

indicates severe sensorimotor damage [40]. 173

Induction of severe TBI 174

Severe TBI was induced by the lateral fluid-percus- 175

sion (LFP) injury model [41]. Rats were anesthetized 176

with ketamine (80 mg/kg, i.p.) and xylazine (17 mg/ 177

kg, i.m.), and mounted on a stereotaxic frame. Subse- 178

quently, a circular craniotomy (5 mm diameter) was 179

performed on the left side of the skull (anteropos- 180

terior to bregma, –5 mm; lateral, 4 mm). After the 181

integrity of the dura mater was verified, a female 182

Luer-lock disc was attached to the craniotomy with 183

Vetbond 3M tissue glue (Deutschland GmbH, Ger- 184

many). A stainless-steel screw was implanted lateral 185

and anterior to bregma. All the elements were fixed to 186

the skull with dental acrylic. TBI induction was car- 187

ried out 90 min after the administration of anesthesia 188

using a fluid percussion device (AmScien Instru- 189

ments, Model FP 302, Richmond, VA, USA). TBI 190
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was considered severe when the pulse of pressure191

achieved 2.6 to 3.3 atm. After TBI induction, the192

implant was removed, and the skin was sutured. Tra-193

madol (20 mg/kg, s.c., NorVet) was applied 15 min194

after TBI induction. Animals with TBI that lost195

more than 30% of their initial bodyweight throughout196

the experimental procedure were discarded from the197

experiment.198

Electrode implantation and evaluation of199

hippocampal excitability200

Previously anesthetized rats (ketamine, 80 mg/kg,201

i.p.; xylazine, 15 mg/kg, i.m.) were placed in a stereo-202

taxic frame. A bipolar electrode was implanted in203

the ventral hippocampus (anteroposterior, –5.3 mm in204

relation to bregma; lateral, 5.2 mm; height, 7.5 mm),205

ipsilateral to injury [42]. Three stainless steel screws206

were placed on the skull to support the implant, which207

was fixed with dental acrylic. ADT was estimated208

seven days after surgery. The procedure consisted of209

the application of a train of electrical stimuli (1 ms210

square pulses at 60 Hz for 1 s) generated with a211

GRASS S-48 model stimulator. The procedure was212

repeated every minute with an initial electric cur-213

rent of 10 �A, which was subsequently increased by214

20% until a behavioral change or an electrographic215

after-discharge was induced [43]. Low values indi-216

cate neuronal hyperexcitability.217

Histology and fractional counting method218

Under anesthesia (pentobarbital, 70 mg/kg, i.p.),219

animals were perfused with 250 ml of 0.9% saline220

(SS) and 1 mg/l heparin (Sigma-Aldrich, Cat #221

H3393), followed by 250 ml of 4% paraformaldehyde222

(Sigma-Aldrich Cat # P6148) and 0.2% glutaralde-223

hyde (Electron Microscopy Sci. Cat # 16210) in a224

phosphate buffer solution (PBS). After perfusion, the225

brain was dissected and kept in a 4% paraformalde-226

hyde solution at 4◦C for 168 h, and subsequently227

included in paraffin for further processing. Brains228

were sectioned in the coronal plane (5 �m thickness)229

into serial sections (1 of 5) through the entire dor-230

sal hippocampus (bregma –2.5 to –4.5 mm). Slices231

were collected and thaw-mounted on Poly-L-lysine232

adhesive (Sigma-Aldrich Cat # P8920) coated glass233

slides.234

NeuN, a neural marker, was evaluated by immuno-235

histochemistry. For this procedure, brain sections236

were first incubated in an antigenic recovery solu-237

tion (Diva, Biocare Medical) for 10 min at 120◦C,238

washed in distilled water and exposed to 3% H2O2 239

for 10 min. Then, sections were incubated in goat 240

serum (1 : 200, Vector Lab USA) for 30 min and sub- 241

sequently in the primary mouse monoclonal antibody 242

directed against NeuN (1 : 200, Millipore Cat # MAB- 243

377). After 72 h, brain sections were incubated for 244

2 h with the secondary antibody (anti-mouse perox- 245

idase) (1 : 200, Vector Lab. Cat # PI-200). Finally, 246

the reaction was revealed with 3,3’-diaminobenzidine 247

tetrahydrochloride (Betazoid DAB Chromogen Kit, 248

Biocare Medical Cat # kit DB801L) and slides 249

were coated with synthetic resin (Entellan®, Merck 250

Millipore). Digitized images of the brain sections 251

were obtained with a camera connected to a micro- 252

scope (Nikon 10x Optical 200M) and analyzed using 253

the Image Pro-Plus 7 software (Media Cybernetics, 254

USA). 255

The fractional counting method [44] was used for
the estimation of the number of neurons per vol-
ume (mm3) in different regions of the hippocampus:
dentate gyrus (DG), hilus, CA1 and CA3, ipsi- and
contralateral to injury or manipulation. An experi-
mental researcher on blind conditions assessed this
estimation. The regions of interest were identified at
the dorsal hippocampus (bregma –2.5 to –3.6 mm) on
digital images previously obtained with a light micro-
scope (Eclipse Ni; Nikon, Japan) and Image Pro-Plus
7 software (Media Cybernetics, USA). Three serial
sections obtained every five slices (see Histology sec-
tion) were evaluated for this purpose. In this case,
the sampling fraction (ssf) corresponded to 1/5. The
area sampling fraction (asf) was calculated [asf = area
(frame)/area (x, y step)] and corresponded to the
counting frame (0.460 x 0.600 mm). The thickness
sampling fraction was estimated with the dissector
height (h) relative to the section thickness t (h/t). The
number of cells was calculated using the following
formula:

N = (�Q−)∗(t/h)∗(1/asf )∗(1/ssf ).

In this formula, Q− represented the number of cells 256

in a known volume fraction of each evaluated area. 257

Ex vivo magnetic resonance imaging 258

The perfusion protocol was conducted as previ- 259

ously described for the histological evaluation, except 260

for the addition of a 2 mM gadolinium-based con- 261

trast agent (Prohance, Bracco Diagnostics Inc.) to the 262

solution [45]. When the perfusion was finished, the 263

head was separated from the body and immersed in 264

4% paraformaldehyde and 2 mM ProHance at 4◦C 265
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overnight. The following day, 0.02% sodium azide266

(Sigma-Aldrich Cat # S2002) was added to the buffer.267

The samples were stored at 4◦C until imaging.268

Imaging was performed at the National Labora-269

tory for MRI (Universidad Nacional Autónoma de270

México) using a Bruker Pharmascan 70/16 US 7.0271

T magnet and a circularly polarized rat head coil,272

coupled to a workstation running Paravision 6.0.1.273

The procedure was carried out at room tempera-274

ture (21 ± 1◦C). The parameters for the scans were275

optimized for gray- and white-matter contrast (Fast276

Low Angle Shot (FLASH) imaging with 3D acquisi-277

tion). The resolution was 85 �m per side (TR/TE/flip278

angle = 30 ms/8.6 ms/20◦). The acquisition time per279

animal was 1 h. Volumes were linearly normalized to280

a custom-made, unbiased, rat brain atlas, which was281

built by interactively registering all image volumes282

using a non-linear transform [46] and the Waxholm283

Space atlas of the Sprague Dawley rat brain [47].284

The total volume of each hippocampus was calculated285

by manually selecting the areas of interest, using an286

atlas of the rat brain [42] as a reference and the ITK-287

SNAP software version 3.6.0 [48]. Similarly, areas288

corresponding to damage (hypointense voxels) were289

selected, and the total volumes of hippocampal injury290

were obtained. Brains that showed image alterations291

under control conditions were discarded.292

Statistical analysis293

A researcher blind to the experimental conditions294

performed each evaluation. Data are expressed as295

the mean ± standard error (SE) of the mean. For the296

analysis of parametric data, a two-way ANOVA test297

followed by a Tukey post-hoc test was used. For the298

analysis of nonparametric data, a Kruskal-Wallis test299

followed by a Dunn post-hoc test was used. A sta-300

tistically significant difference was considered when301

p-values ≤ 0.05.302

RESULTS303

Histological analysis demonstrated that the elec-304

trode tips were implanted within the ventral305

hippocampus in all the animals used for ADT esti-306

mation.307

In the Sham + PEG group, animals showed a mean308

bodyweight of 265 ± 5.7 g at the beginning and309

358 ± 15.2 g at the end of the protocol (Fig. 2). Dur-310

ing the experimental procedure, animals from this311

same group showed normal sensorimotor activity,312

with a score of 27–28 estimated with NS (Fig. 3).313

Fig. 2. Effects of subchronic administration propylparaben (PPB)
on bodyweight as a consequence of a severe traumatic brain injury
(TBI). Bodyweight was registered continuously for each experi-
mental group. In comparison to the Sham + PEG and Sham + PPB
groups, which showed a progressive gain in bodyweight, the
TBI + PEG group showed a weight loss during the first five
days after TBI. Moreover, the TBI + PEG group showed a lower
weight when compared with the Sham + PEG group during the
experimental protocol. Similarly, the TBI + PPB group showed
a weight loss during the first five days post-TBI. However, at
the end of the experimental procedure, a weight recovery simi-
lar to the Sham + PEG group was observed. The values represent
the mean ± SE of the percentage of bodyweight change rela-
tive to baseline values (day 0). ∗p < 0.05, ∗∗p < 0.01 (TBI + PEG
versus Sham + PEG); @p < 0.05, @@p < 0.01 (TBI + PPB ver-
sus Sham + PEG); &p < 0.05, &&p < 0.01 (TBI + PPB versus
TBI + PEG).

Fig. 3. Changes in the sensorimotor function induced by TBI and
associated with PPB administration. The sensorimotor function
was evaluated with the composite neuroscore (NS) throughout
the experimental protocol. Animals from the Sham + PEG and
Sham + PPB groups showed a NS rate indicating normal function
(27–28). The NS estimated for the TBI + PEG group revealed a
severe sensorimotor dysfunction starting 48 h after TBI and evi-
dent 23 and 30 days post-TBI. The TBI + PPB group showed
a severe sensorimotor dysfunction two days after TBI. How-
ever, this effect was less evident 23 and 30 days after TBI.
The values represent the mean ± SE of the scores obtained in
the NS evaluations. @@p < 0.01; @@@p < 0.001 (TBI + PPB ver-
sus Sham + PEG); ∗∗∗p < 0.001 (TBI + PEG versus Sham + PEG);
&&p < 0.01; &&&p < 0.001 (TBI + PPB versus TBI + PEG).
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ADT was attained at 299.3 ± 22.5 �A (Fig. 4). No314

after-discharge was evoked as a consequence of315

ADT estimation (Table 1). The neuronal preservation316

(NeuN+/mm3) in the dorsal hippocampus ipsilateral317

to craniotomy was similar to the contralateral side318

(Fig. 5, Table 2). MRI analysis revealed a similar319

volume between ipsilateral (48.69 ± 2.79 mm3) and320

contralateral (47.46 ± 2.61 mm3) hippocampus. Hip-321

pocampal damage was not detected in this group322

(Fig. 6, Table 3). The results obtained from the323

Sham + PPB group showed no statistical differences324

when compared with those from the Sham + PEG325

group (Figs. 2–4, Tables 1–3).326

Fig. 4. Effects of subchronic administration of propylparaben
(PPB) on hippocampal excitability after a severe traumatic
brain injury (TBI). The estimation of the after-discharge thresh-
old (ADT) was used to evaluate the hippocampal excitability
in animals previously implanted with a bipolar electrode in
the ventral hippocampus. Sham + PEG and Sham + PPB groups
demonstrated similar hippocampal excitability. In contrast, ani-
mals from the TBI + PEG group achieved the ADT at lower values
when compared with the Sham + PEG group, suggesting hip-
pocampal hyperexcitability. The TBI + PPB group presented ADT
values similar to Sham + PEG and Sham + PPB groups. Values are
expressed as the mean ± SE of the �A required to achieve the ADT.
∗∗∗p < 0.001 versus TBI + PEG.

In the TBI + PEG group, animals underwent a 327

severe TBI with a fluid percussion of 3.28 ± 0.13 328

atm. A significant decrease in their bodyweight dur- 329

ing the first 5 days post-TBI (p < 0.01 day 3; p < 0.05 330

at day 4 post-TBI versus Sham + PEG) was regis- 331

tered. From that time on, the bodyweight gradually 332

increased, although the values were lower when com- 333

pared with the Sham + PEG group (days 23 and 334

31 post-TBI; p < 0.05 versus Sham + PEG) (Fig. 2). 335

The NS evaluation at day 2 post-TBI showed sen- 336

sorimotor impairment (14 ± 0.4 points; p < 0.001 337

versus Sham + PEG), a condition that became evi- 338

dent at days 23 and 31 post-TBI (Fig. 3). During 339

the evaluation of the hippocampal excitability, ani- 340

mals achieved the ADT at lower values (64.2% 341

Fig. 5. Subchronic treatment with propylparaben (PPB) reduces
the long-term hippocampal injury resulting from severe traumatic
brain injury (TBI). Representative microphotographs of the dor-
sal dentate gyrus and CA1 of the Sham + PEG, TBI + PEG, and
TBI + PPB groups. Brain sections were processed by immunohis-
tochemistry to evaluate NeuN expression. Notice that sections from
the TBI + PEG group show a lower number of immunoreactive
cells (arrowheads) when compared with the Sham + PEG group.
This effect was not observed in the TBI + PPB group.

Table 1
Behavioral and electrographic changes evoked during the after-discharge threshold estimation in animals with

severe traumatic brain injury and subchronic administration of propylparaben or vehicle

Group (number of animals) Stage (I-V) (% animals) ADT duration (s) (% animals) Spike frequency (Hz)

SHAM + PEG (n = 7) Stage I (100%) ND ND
SHAM + PPB (n = 7) Stage I (100%) ND ND
TBI + PEG (n = 7) Stage I (14.3%) 85 ± 20.21 (100%) 6.3 ± 0.24

Stage II (57.2%)
Stage III (28.5%)

TBI + PPB (n = 7) Stage I (71.5%) 17.83 ± 4.3 (75%) ∗∗∗ 3.56 ± 0.8 ∗∗
Stage II (28.5%) ND (25%)

ADT, After-discharge threshold; ND, not determined; PPB, propylparaben; PEG, polyethylene glycol; TBI, trau-
matic brain injury. Values represent the mean ± SE of the after-discharge duration (s) and spike frequency (Hz) of
the experimental groups. ∗∗p < 0.01; ∗∗∗p <0.001 versus TBI + PEG.
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Table 2
Effect of subchronic administration of propylparaben on the number of NeuN positive cells in the dorsal hippocampus, ipsi- and contralateral

to severe traumatic brain injury

Group

(number of

rats)

Dentate Gyrus Hilus CA1 CA3

Ipsi- Contra- Ipsi- Contra- Ipsi- Contra- Ipsi- Contra-

SHAM + PEG

(n = 4)

2649 ± 90.4 3057 ± 94.1 762 ± 40.9 848 ± 41 1791 ± 135.4 2672 ± 171 1329 ± 155.5 1304 ± 103

SHAM + PPB

(n = 4)

2620 ± 52.3 2953 ± 97.7 687 ± 15.1 712 ± 70.7 1534 ± 103 2444 ± 193 1180 ± 73.1 1235 ± 90

TBI + PEG

(n = 4)

1276 ± 42.6∗∗∗ 1249 ± 71.4∗∗∗ 207 ± 12.7∗∗∗ 310 ± 24.4∗∗∗ 830 ± 16.5∗∗∗ 771 ± 37∗∗∗ 664 ± 25∗∗∗ 663 ± 25∗∗∗

TBI + PPB

(n = 4)

2085 ± 268∗,& 2529 ± 97.4∗∗,&&& 474 ± 42.5∗∗,&&& 558 ± 62.6∗,& 1303 ± 61.5∗∗,&& 1389 ± 99.5∗∗,& 1065 ± 99 1085 ± 58.5&

PPB, propylparaben; PEG, polyethylene glycol; TBI, traumatic brain injury. Values represent the mean ± SE of neural preservation (mm3).
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 versus Sham + PEG; &p < 0.05; &&p < 0.01; &&&p < 0.001 versus TBI + PEG.

Fig. 6. Subchronic treatment with propylparaben (PPB) reduces
the long-term hippocampal injury resulting from severe trau-
matic brain injury (TBI). Representative images of brains from
Sham + PEG, TBI + PEG, and TBI + PPB groups at the level of
dorsal (left) and dorso-ventral hippocampus (right) obtained with
ex vivo magnetic resonance imaging (MRI with T2 contrast) at 31
days post TBI. Note the areas of hypointensity (arrowheads) sug-
gestive of focal lesions in cortex, thalamus and hippocampus in
the images from the TBI + PEG group. The areas of lesion in these
brain areas were less evident in the images from the TBI + PPB
group.

less versus Sham + PEG group, p < 0.001), suggest-342

ing hyperexcitability (Fig. 4). As a consequence of343

the ADT estimation, the animals (100%) showed344

an after-discharge with a duration of 85 ± 20.2.s345

and a spike frequency of 6.3 ± 0.24 Hz (Table 1).346

Regarding histology evaluation, the TBI + PEG group347

presented a decrease in neuronal preservation in all348

the areas evaluated, ipsi- (DG, 52%, p < 0.001; hilus, 349

73%, p < 0.001; CA1, 54%, p < 0.001 and CA3, 50%, 350

p < 0.001 versus Sham + PEG group) and contralat- 351

eral (DG, 59%, p < 0.001; hilus, 63%, p < 0.001; 352

CA1, 71%, p < 0.001 and CA3, 49%, p < 0.001 versus 353

Sham + PEG group) to the trauma (Fig. 5, Table 2). 354

MRI analysis revealed a decrease in hippocampal vol- 355

ume (17.2%; p < 0.01 versus Sham + PEG group), as 356

well as increased damage in the ipsilateral hippocam- 357

pus (p < 0.05 versus Sham + PEG group), changes 358

which were less evident in the contralateral hip- 359

pocampus (volume p = 0.191, damage p > 0.99 versus 360

Sham + PEG group) (Table 3). 361

In the TBI + PPB group, rats received a fluid per- 362

cussion of 3.31 ± 0.11 atm that induced a severe 363

TBI. A decrease in bodyweight was observed in 364

the animals on days 4 and 5 post-TBI (p < 0.01, 365

p < 0.05 versus Sham + PEG). However, a notice- 366

able bodyweight recovery was detected afterward. 367

Indeed, animals from the TBI + PPB group showed 368

higher bodyweight on days 23 (p < 0.05) and 31 369

(p < 0.01) post-TBI, when compared with TBI + PEG 370

group (Fig. 2). Two days after trauma, rats showed 371

NS of 14.4 ± 0.2 (p < 0.001 versus Sham + PEG), 372

indicating a severe TBI. However, a partial sen- 373

sorimotor function recovery was observed on days 374

23 and 31 post-TBI (p < 0.01 and p < 0.001 versus 375

TBI + PEG groups, respectively) (Fig. 3). Concern- 376

ing ADT estimation, the TBI + PPB group achieved 377

similar ADT values as those from the Sham + PEG 378

group (p = 0.906) (Fig. 4). During the ADT esti- 379

mation, animals from TBI + PPB group showed a 380

shorter after-discharge (p < 0.001 versus TBI + PEG) 381

(Table 1). 382

Immunohistochemistry showed lower neuronal 383

preservation in all the hippocampal areas evalu- 384

ated, ipsilateral (hilus, p < 0.01; DG, p < 0.05; CA1, 385
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Table 3
Effect of subchronic administration of propylparaben (PPB) in traumatic brain injury (TBI)-induced changes

in the total volume and volume of injury in the hippocampus, ipsi- and contralateral to the trauma and assessed
with ex vivo magnetic resonance imaging (MRI)

Group (number of animals) Hippocampal volume (mm3) Injury volume (mm3)

Ipsilateral Contralateral Ipsilateral Contralateral

SHAM + PEG (n = 4) 48.6 ± 2.7 47.4 ± 2.6 0 0
SHAM + PPB (n = 6) 45.7 ± 1.16 47.6 ± 1.04 0 0
TBI + PEG (n = 4) 40.3 ± 0.40∗∗ 43.4 ± 0.95 0.27 ± 0.15∗ 0.006 ± 0.006
TBI + PPB (n = 6) 42.6 ± 0.87∗ 46.3 ± 0.96 0.11 ± 0.07∗ 0.01 ± 0.008

PPB, propylparaben; PEG, polyethylene glycol; TBI, traumatic brain injury. Values represent mean ± SE in mm3.
∗p < 0.05; ∗∗p < 0.01 versus Sham + PEG.

p < 0.01 versus Sham + PEG group) and contralat-386

eral to the trauma (hilus, p < 0.05; DG, p < 0.01;387

CA1, p < 0.01 versus Sham + PEG group). When388

compared with the TBI + PEG group, animals from389

the TBI + PPB group demonstrated a high neuronal390

preservation in both ipsilateral (DG, p < 0.05; hilus,391

p < 0.001; CA1, p < 0.01) and contralateral to the392

trauma (DG, p < 0.001; hilus, p < 0.05; CA1, p < 0.05;393

CA3, p < 0.05) (Table 2, Fig. 5). Concerning MRI394

evaluation, the ipsilateral hippocampus showed lower395

volume (12%, p < 0.05 versus Sham + PEG) and396

less damage (p < 0.05 versus Sham + PEG). These397

changes were similar to those found in the TBI + PEG398

group (Table 3).399

DISCUSSION400

Severe TBI induced with the LFP model in rats is401

known to result in significant permanent motor and402

cognitive deficits [49, 50]. These alterations are the403

consequence of induced injury in different brain areas404

[51, 52]. In the present study, animals with severe TBI405

showed a significant sensorimotor deficit as well as406

hippocampal cell damage and hyperexcitability, con-407

ditions that were diminished when subchronic PPB408

was given after the trauma. These results support that409

PPB induces neuroprotection after TBI.410

In experimental models of TBI, 17�-estradiol in-411

duces neuroprotection [53] by the reduction of oxida-412

tive stress [54], apoptosis [55], and pro-inflammatory413

cytokines [56]. Indeed, the administration of 17�-414

estradiol is used to induce neuroprotection for differ-415

ent neurodegenerative disorders such as Alzheimer’s416

disease and Parkinson’s disease [57]. The neuropro-417

tection mediated by PPB can be explained due to its418

estrogenic effect [58]. PPB interacts with the estrogen419

receptor (30,000 times less potent than 17�-estradiol)420

[59] and exerts a stimulatory action on the expression421

of estrogen receptors [60].422

TBI induces delayed glial activation [61], cerebral 423

accumulation of amyloid-� (A�) protein, and oxida- 424

tive stress [62]. In addition, TBI results in enhanced 425

release of glutamate [13], a condition that elicits neu- 426

ronal death [63], inflammation [64], and oxidative 427

stress [65]. According to this information, TBI rep- 428

resents a potential risk factor for Alzheimer’s disease 429

[66]. Indeed, enhanced extracellular accumulation 430

of glutamate is promoted by soluble oligomers of 431

the A� protein accumulated in Alzheimer’s disease 432

brain [67]. 433

The blockage of Na+ channels is a strategy to 434

reduce the neurodegeneration induce by glutamate 435

[68]. The blockage of Na+ channels can be related 436

with a decrease in Ca+2 influx [69]. Moreover, the 437

attenuation of intracellular Ca+2 is associated with a 438

reduction of the TBI-induced diffuse axonal injury, 439

thus avoiding the aberrant connections between dif- 440

ferent brain areas [70]. PPB is a voltage-dependent 441

sodium channel blocker [38] that induces neuro- 442

protective effects in experimental models of status 443

epilepticus [36, 37]. The neuroprotective effect 444

induced by PPB in TBI is similar to that achieved 445

with the administration of other voltage-dependent 446

Na+ channel blockers [71]. Recently it was described 447

that PPB is a blocker of hNaV1.2 channels, sharing 448

the mechanism of action of most of sodium channel 449

blocking antiseizure drugs [39]. The neuroprotection 450

induced by PPB can be associated with the blockage 451

of hNaV1.2 channels that inhibit glutamate-induced 452

apoptosis through the modulation of the Bcl-2/Bax- 453

dependent cell death pathways [68]. This mechanism 454

explains the reduced extracellular levels of gluta- 455

mate and neuroprotection found in the hippocampus 456

of rats with status epilepticus and administered with 457

PPB [36]. 458

Some studies indicate that severe TBI can cause 459

hippocampal hyperexcitability [29–31]. Our exper- 460

iments showed hippocampal hyperexcitability (low 461

ADT values), as well as the spreading of the 462
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ADT-induced after-discharge to other brain areas463

as a result of TBI. Consistent with the histologi-464

cal evaluation, as well as with previous studies [36],465

these effects were not observed when PPB was sub-466

chronically administered after TBI. These results can467

be explained by the neuroprotective effect induced468

by PPB. However, the MRI evaluation of the hip-469

pocampal volume and damage showed no significant470

differences in the TBI groups, with and without PPB.471

These findings suggest that although PPB reduces472

the TBI-induced neuronal damage, changes in other473

cellular components—such as axons and dendrites,474

which may be involved in the cerebral volume—are475

not prevented [72, 73]. Therefore, additional stud-476

ies are necessary for a better understanding of this477

implication.478

Our findings are in agreement with other stud-479

ies indicating that parabens induce neuroprotective480

effects. Methylparaben applied i.p. reduces the neu-481

rotoxicity and cognitive impairment induced by482

6-hydroxydopamine in rats [74]. However, further483

research is essential to determine the optimal regi-484

men of administration. In humans, PPB applied v.o.485

would achieve low concentrations in the brain as con-486

sequence of its faster metabolism in liver and short487

half-life (2.9 h) [75]. In rats, PPB administered v.o,488

presents a half-life of 90 min. However, beneficial489

effects in central nervous system (CNS) have been490

obtained when PPB is administered i.p. Talevi et al.491

(2007) found that PPB applied i,p, induces anticon-492

vulsant effects in mice [76]. We demonstrated that493

PPB administered i.p. induces neuroprotection in rats494

submitted to status epilepticus [36, 37]. Pharmacoki-495

netic studies of PPB applied i.p. are essential to clarify496

how it induces effects in CNS.497

According to the data obtained in the present498

study, it is possible to support that PPB repre-499

sents a drug with a potential therapeutic effect in500

subjects with TBI to prevent the development of501

long-term disorders such as Alzheimer’s disease,502

which is highly associated to hippocampal dam-503

age [77]. Different mechanisms can be involved504

in the PPB-induced neuroprotection (Fig. 7). How-505

ever, findings suggest that PPB chronically applied506

induces endocrine-disrupting potential that can con-507

tribute to breast cancer progression, tumors, birth508

defects, adverse reproductive outcomes, and devel-509

opmental disorders due to its estrogenic effects [78,510

79, 59, 60]. Studies also indicate that PPB can be511

toxic to liver cells due to the increased production512

of superoxide anions in liver cells [80]. In contrast,513

other studies point out that the toxicity of parabens514

Fig. 7. Proposed direct and indirect mechanisms of neuropro-
tective effects of propylparaben (PPB) in severe traumatic brain
injury (TBI). The blockage of hNaV1.2 channels by PPB may
avoid the enhanced glutamate release that results as consequence
of brain damage or hyperexcitability. The blockage of hNaV1.2
channels can also reduce the subsequent apoptosis through the
modulation of Bcl-2/Bax pathways. PPB may also induce neuro-
protection by activation estrogen receptors. All these mechanisms
could induce neuroprotection and avoid the TBI-induced long-term
consequences.

in humans has not been established and these drugs 515

would need to be tested rigorously for safety [81]. 516

Future studies using experimental models are essen- 517

tial to confirm that subchronic administration of PPB 518

after severe TBI prevents the development of cogni- 519

tive and memory impairment, as well as neurological 520

disorders (post-traumatic epilepsy, Parkinson’s dis- 521

ease and Alzheimer’s disease) without side effects 522

[18, 19, 82]. 523
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