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When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-
specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since
the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the
transfer of learning from perceptual to motor timing in a large sample of subjects (n= 65; 39 women). We found that intense training
in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer,
expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found sub-
jects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor
area and caudate–putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to
the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central
role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.

Key words: fMRI; motor practice; motor timing; SMA; time perception

Significance Statement

Intensive training in a task can lead to improvements in other behaviors when the neural resources are shared between con-
ditions. Hence, the learning generalization strategy is now actively used in interventions to improve timing behaviors across
tasks. Here we show that timing precision enhancement after interval discrimination training can be transferred as a decrease
in temporal variability during a tapping task in a subgroup of subjects. Crucially, the generalization from perceptual to motor
timing increased activity in the pre-supplementary motor area and caudate–putamen in that subgroup. These findings sup-
port the notion that magnified recruitment occurs in the cortico-basal ganglia circuit when an acquired perceptual timing
ability is transferred to a motor timing task.

Introduction
The human brain can flexibly quantify time across complex percep-
tual and motor behaviors such as musical appreciation and execu-
tion. These behaviors demand the development of sophisticated

skills to extract the beat or isochronous pulse of intricate musical
patterns and produce predictive movements entrained in the beat
(Honing and Merchant, 2014; Mendoza and Merchant, 2014;
Lenc et al., 2021). Hence, temporal learning and processing are crit-
ical elements of human intelligence that have been investigated for
decades (Treisman, 1963; Herholz and Zatorre, 2012; Ayala et al.,
2017; Balasubramaniam et al., 2021). The classical view from exper-
imental psychology of a common clock for timing across sensory
and motor tasks (Kristofferson, 1980; Ivry and Hazeltine, 1995;
Gibbon et al., 1997) has been replaced by imaging and neurophys-
iological studies supporting the idea of a partially distributed neural
timing circuit that has two elements (Rao et al., 1997; Jantzen et al.,
2002; Macar et al., 2006; Coull et al., 2008; Wiener et al., 2010;
Merchant et al., 2013b). The first element is the core timing net-
work, integrated by key areas of the motor system, namely, the sup-
plementary motor areas (SMA-proper and pre-SMA), the
cerebellum, and the cortico-thalamic-basal ganglia circuit
(Merchant et al., 2014a, 2015a; Merchant and Bartolo, 2018;
Tanaka et al., 2021). This core timing network is involved in
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temporal processing in a wide range of perceptual and motor tim-
ing behaviors on the scale of hundreds of milliseconds, including
visual, auditory, and tactile stimuli and a variety of motor effectors
(Wiener et al., 2010; Merchant et al., 2013a; Merchant and
Averbeck, 2017). The second element is represented by areas selec-
tively engaged in the specific behavioral requirements of a task
(Buhusi and Meck, 2005; Coull et al., 2011; Harrington et al.,
2011). These task-dependent areas interact with the core timing sys-
tem to produce the characteristic pattern of performance variability
of a specific timing paradigm (Merchant et al., 2008b, 2013a).

The notion of a core timing network has been also supported
by experiments that evaluate learning and generalization of tim-
ing (Bueti and Buonomano, 2014). The hypothesis behind these
studies is that the learning-based improvements in temporal pro-
cessing within a particular task will transfer to another timing
behavior if they share trained neural circuit resources.
Normally, learning transfer is quantified as an increase in time
precision when comparing temporal performance in the general-
ization task between post-training and pre-training sessions. This
strategy is common in the artificial neural network literature.
Namely, after training a recurrent neural network in a condition
with specific input–output rules, the network is tested in other
conditions to determine generalization capabilities due to com-
mon neural weights and shared internal dynamics (Laje et al.,
2018; Pérez and Merchant, 2018; Bi and Zhou, 2020; Merchant
and Pérez, 2020). Thus, robust temporal generalization, mea-
sured from intensive training in time discrimination, has been
documented as an increase in timing acuity across auditory fre-
quencies (Wright et al., 1997; Karmarkar and Buonomano,
2003), sensory modalities (Nagarajan et al., 1998; Westheimer,
1999; Bartolo and Merchant, 2009), stimulus locations
(Nagarajan et al., 1998), and sensory to motor timing tasks,
which is particularly relevant to the present study (Meegan et
al., 2000; Planetta and Servos, 2008; Fabio et al., 2011). These
findings strongly support the existence of a multimodal and
multi-context core timing network (Merchant et al., 2008a;
Wiener et al., 2010; Merchant and Yarrow, 2016).

For this study, we recruited 65 healthy human subjects who
underwent intensive interval discrimination training for a week
and performed pre- and post-training sessions of a synchroniza-
tion–continuation tapping task inside an fMRI scanner. We
found that half of the participants showed learning gains in the
precision of interval discrimination. These gains were transferred
to the temporal execution of a motor task with initial tapping
synchronization to a metronome, followed by a self-driven
rhythmic response. In addition, we found groups of subjects
behaving as non-learners (NL) and covert rhythmic-skill (CR)
learners. Furthermore, we tested 29 additional subjects that per-
formed the synchronization–continuation tapping task inside an
fMRI scanner for two sessions separated by a week but with no
training in the time discrimination task. This group served as a
control. Then, we focused on the change in hemodynamic
responses associated with the transfer of learning from percep-
tual to motor timing and compared them with the brain activa-
tion profiles of the NL, CR learners, and the control populations
in the post- versus pre-training sessions.

Materials and Methods
Experimental design
For the current research, a pre-training/training/post-training interven-
tion was implemented (Wright et al., 1997; Bartolo andMerchant, 2009).
In the first session, subjects performed the synchronization–continua-
tion task (SCT; pre-training) within the MRI scanner. Later that day,

subjects started their first training session of a 7-day interval discrimina-
tion task (IDT) training program. On the 7th day, after completing the
IDT, subjects performed the second SCT session (post-training) inside
the MRI scanner (Fig. 1A). The experimental group performed the fully
experimental paradigm and was formed by 69 right-handed healthy sub-
jects (42 women) with amean age of 27 years (age range, 20–34 years), no
record of neurological or psychiatric disorders, and normal or
corrected-to-normal vision. On the other hand, the control group,
made up of 28 subjects (16 women) with a mean age of 27 years (age
range, 20–34 years), only performed the two SCT sessions (1 week apart)
with no IDT training. All subjects gave written informed consent for the
study protocol, which was approved by the bioethics research committee
of the Institute of Neurobiology, UNAM. The study was performed in
accordance with the ethical principles of the Declaration of Helsinki.

Both tasks were programmed using MATLAB R2013a and the
Psychtoolbox library (Brainard, 1997). A Dell XPS Intel Core i5 laptop
with Windows 7 was used to run the tasks. During the IDT, all partici-
pants were seated comfortably on a chair facing the 15-in laptop in a
quiet experimental room; only the space bar and left and right arrow
keys were unlocked.We employed empty intervals, which were delimited
by a 3.77 × 3.77 cm2 gray square that flashed at the center of a black
screen. Each marker was displayed for 33 ms (screen resolution was
1,366 × 768 pixels, and the refresh rate was 60 Hz). As mentioned before,
the SCT was performed inside the scanner and presented using a pair of
video goggles, which were binocular LED screens with diopter correction
(VisualSystem, NordicNeuroLab). The subjects’ responses were regis-
tered using a handheld response collection device (ResponseGrip,
NordicNeuroLab). At the beginning of each trial, subjects were
instructed to fixate on an isometric white cross (1.2 cm) that appeared
at the center of the black screen. After a variable period (1.2–2.4 s), a
3.77 × 3.77 cm2 gray square was presented in sequence as a metronome
with an isochronous interstimulus interval of 850 ms.

Tasks and training
IDT
Subjects had to discriminate between two intervals and determine which
one had the longest duration (Fig. 1A,B). One of the intervals had a cons-
tant duration of 850 ms (base interval), as it has been shown that it has a
wide time generalization profile compared to the commonly used inter-
vals in the hundreds of milliseconds (Bartolo and Merchant, 2009). The
comparison intervals were selected pseudo-randomly without repetition
from the following eight values, 566, 666, 783, 816, 883, 916, 1,033, and
1,330 ms, which were carefully calculated to maximize the threshold
boundaries (Merchant et al., 2008b). We use the term “repetition” to
refer to the subsequent random presentation of the eight comparison
intervals. The first standard or comparison intervals were presented ran-
domly. The first interval was presented three consecutive times, whereas
the last interval was presented only once (Fig. 1B). To measure the
response time, subjects were asked to press and hold the spacebar at
the start of each trial. Then, subjects had to release the spacebar and press
the left or right arrow key to indicate whether the first or second interval
was longer, respectively. All actions were performed with the right hand.
At the end of each trial, feedback was given on whether the response was
correct or incorrect. During a training session, the subjects completed 4
blocks of 10 repetitions (320 total trials, with a duration of ∼60 min per
training session for 7 d).

SCT
Subjects were lying down inside the scanner with the video goggles com-
fortably adjusted and were instructed to entrain to the visual metronome
by pressing a button with their right index finger. The visual metronome
stopped after nine synchronized taps (synchronization epoch), and the
subjects were required to continue pressing the button for another 12
taps (continuation epoch), trying to maintain the same beat (Fig. 1C).
The fixation cross was present during both epochs. In the continuation
epoch, once the subject pressed the button for the 12th time, the fixation
cross disappeared, and the mean inter-tap interval (ITI) was calculated
and presented to the subject as feedback for 2 s. Afterward, the screen
was completely black for 10 s (inter-trial interval), and then the white
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cross appeared again, signaling the start of the next trial. If the asynchro-
nies (time between the visual cue and response) were greater than
±425 ms, the trial was excluded from the behavioral and image analyses.
Three runs were performed per SCT session, the first one with 20 trials
and the rest with 16 trials. Each run lasted ∼10 min. Total scanning time
was about 60 min, including functional, anatomical, and diffusion
images.

MRI acquisition
Images were acquired in the National Laboratory for Magnetic
Resonance Imaging at UNAM, using a 3.0 T Philips Achieva TX system
equipped with a 32-channel head coil. A gradient echo echo-planar
imaging sequence was performed to acquire T2*-weighted images
(TR = 2 s, TE = 30 ms; voxel resolution = 2 × 2 × 4 mm3). A total of 32
axial slices comprised each EPI volume. The size of the volume allowed

us to scan the entire cerebrum and most of the cerebellum (below lobule
VIIB). Five dummy volumes were acquired at the beginning of the run
for T1 equilibration. In addition, a three-dimensional spoiled
gradient-recalled echo sequence was used to obtain high-resolution
T1-weighted images with a 1 mm3 resolution (TR= 8.15 ms, TE =
3.75 ms; image matrix = 256 × 256 × 176), which was used for image reg-
istration purposes.

Statistical analysis
Behavioral data

IDT. The method of constant stimuli was used to estimate the daily
thresholds (Getty, 1975). The difference threshold was computed from
the psychometric curve, where the probability of long-interval discrimi-
nation was plotted as a function of the comparison interval (Merchant et
al., 2008b; Méndez et al., 2014). A logistic function was fitted to the data,

Figure 1. Experimental paradigm. A, Timeline of the SCT pre- and post-training sessions and the IDT training. First, subjects (n= 65) performed three blocks of the SCT inside the MRI scanner;
afterward, subjects underwent a 1-week training in the IDT. Finally, subjects performed the second SCT session. B, IDT. Subjects were presented with two intervals of different durations and had
to choose which one was the longest. The first interval was always presented three times. t1 corresponds to the shortest interval, while t2 refers to the longest interval. Intervals were chosen
randomly across trials. The base interval was 850 ms, while the comparison intervals were selected from a list of four shorter and four longer intervals with respect to the base interval. C, SCT. A
visual metronome (gray square) was presented in the middle of a black screen with an interstimulus interval of 850 ms. Subjects had to synchronize to the metronome, pressing a button for 9
taps, after which they had to continue pressing the button for 12 taps. Feedback was provided as the mean ITI generated for both epochs. Subjects were instructed to accurately produce intervals
of 850 ms.
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and the threshold corresponded to half the subtraction of the interval at
0.75 and that at 0.25 of the probability of answering long (Fig. 2A). The
threshold was computed for each of the four blocks per day. Then, we
plotted the threshold across the 7 d of training and fitted a power func-
tion (y = AxB, where y, threshold; A, the intercept; x, training days; B,
first polynomial coefficient). The learning criteria consisted of (1) a sign-
ificant main effect of training in an ANOVA using threshold as the
dependent variable and training session as the factor and (2) a significant
fit of the power function with a negative slope, implying an improvement
in the subject's ability to discriminate the stimuli.

SCT. The first four trials of run 1 of the SCT were not included in
the analysis to obtain data from a steady behavioral response. In total,
48 trials were analyzed (3 runs of 16 trials each). The synchronization
epoch included nine taps and eight ITIs, but the first tap and ITI were
discarded. The continuation epoch consisted of 12 taps and 12 ITIs, but
the last ITI was not included in the analysis. In addition, trials were not
further analyzed when asynchronies were above ±425 ms (half the
duration of the interstimulus interval) or a single ITI was longer than
850 ms ± 400 ms. Hence, we obtained an uneven number of ITIs and

tapping times per subject. Consequently, a bootstrap resampling
method (10,000 iterations) was carried out to get homogenous data
across subjects.

For each subject, we compared the following SCT performance mea-
sures between pre- and post-sessions: asynchronies, constant error, and
temporal variability. Asynchronies were the time difference between tap
and stimulus onsets and thus were computed only for the synchroniza-
tion epoch. Constant error was the average difference between ITIs and
the instructed interval. Temporal variability was defined as the standard
deviation of ITIs. We also computed the temporal variance ratio (TVR),
which is the ratio of the ITI variance of the pre-session divided by the
post-session variance. Therefore, a TVR value below one corresponds
to an increase, whereas a value above one corresponds to a decrease in
temporal variability in the post-session with respect to the pre-session.
Constant error and temporal variability were calculated separately for
the synchronization and continuation epochs.

Asynchrony values were presented as phases with respect to the beat
onset times over the instructed interval. Asynchronies were transformed
from milliseconds (ai) to angular units in radians (θi) with the equation
θi = (2π× ai)/Ti, where Ti corresponded to 850 ms, the target interval.
Circular statistics were used to summarize the distribution of the relative

Figure 2. IDT behavioral performance. A, Psychometric functions. The first and last psychometric function (one block) for a subject with a significant reduction of its discrimination threshold
(left panel) and a subject without a significant reduction of the same measure (right panel). B, Group discrimination threshold as a function of training day. Interquartile boxplot of the dis-
crimination threshold for subjects that significantly improved their performance in the IDT (learners [LG], n= 32; top) and subjects without any improvement during the IDT, which were
subdivided into NL (n= 16) and CR subjects (n= 17), based on their pre- and post-SCT performance (Fig. 3A). The black dotted line is at 100 ms for visual reference. C, Discrimination threshold
across subjects. Discrimination thresholds for the first (light colors) and last (dark color) IDT training sessions connected by a line for each subject of the three groups. D, Matrix of statistical
differences between groups. Each element of the matrix corresponds to the pairwise comparison (t test) between the three groups for the initial (1) and final (2) training sessions in the IDT.
Empty circles depict nonsignificant effects, small filled circles indicate a significant effect at p< 0.05, and large filled circles indicate a significant effect at p≤ 0.005. Note the large decrease in
discrimination thresholds for LG subjects and the slight increase in NL and CR subjects in the last IDT session with respect to the initial IDT session.
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phases on the unit circle using the mean resultant vector, which has two
parameters: the length R (dimensionless ranging from 0 to 1) and angle
(given in radians from 0 to 2π). R equal to 0 means phases in asynchro-
nies that are uniformly distributed along the whole inter-onset interval,
whereas an R value of 1 indicates identical phases (Fig. 3A). A vector

angle of 0 means a perfect temporal alignment between tap and stimulus,
while positive and negative angles indicate that the tap followed (positive
asynchronies) or preceded (negative asynchronies) the stimulus, respec-
tively (Gámez et al., 2018). Asynchronies were analyzed with MATLAB
Circular Statistics Toolbox. The Rayleigh test was used to assess unimod-
ality with the null hypothesis of a uniform distribution around the circle.
Differences between sessions and groups were determined using the
Harrison–Kanji test, which is a parametric two-way ANOVA for circular
data, using session (pre-training and post-training) as the within-
subjects factor and group as the between-subjects factor.

Three-way repeated-measures ANOVAs were carried out using cons-
tant error and temporal variability as dependent variables, session (pre-
and post-training) and epoch (synchronization and continuation
epochs) as the within-subjects factor, and group [learners, NL, CR learn-
ers, gainers (GA), and non-gainers (NG); see below] as the between-
subjects factor.

Post hoc paired t tests were used to assess differences between groups
and sessions. Routines for statistical analysis were written using
MATLAB R2013a. The statistical level to reject the null hypothesis was
α= 0.05. The Greenhouse–Geisser test in the repeated-measures
ANOVAs was used to correct probability levels from deviations in
sphericity.

Behavioral clustering
In Figure 3A, we plotted the TVR of the continuation epoch of the SCT as
a function of the normalized threshold difference (Z score) between the
first and last days of training in the IDT. The former is a measure of tem-
poral generalization, with values above one indicating a decrease in tem-
poral variability in the post-training session with respect to the
pre-training session. The latter is a measure of temporal learning, with
values below zero indicating an increase in temporal acuity because of
a decrease in the discrimination threshold after the daily intensive
training.

We found the two expected groups of subjects based on previous
studies (Meegan et al., 2000; Planetta and Servos, 2008). First, we
identified a group of learners with a negative threshold difference sta-
tistically different from zero (see also the above learners’ criteria) with
a concomitant time generalization effect, where the TVR was larger
than one, and a significant effect of the session (permutation test).
This group was called learners with generalization (LG, n = 32;
Fig. 3A–C, blue dots). Second, we found a group of subjects with no
learning, a threshold difference that was not statistically different
from zero, and no time generalization (TVR below one). We named
this group NL (n = 16; Fig. 3A–C, orange dots). Notably, we also found
a third group, which we called CR learners (n = 17; Fig. 3A–C, red
dots). The subjects in this group were NL with a TVR that exhibited
a significant decrease in time variability during the post-training
session. We ran K-means clustering with a “city block distance”
metric and k = 1:5. With k = 3, we obtained the lowest Bayesian infor-
mation criterion of −24.1776. The centroids in x and y coordinates
(normalized threshold difference and TVR, respectively) were centroid
1 = [−1.2, 1.2], centroid 2 = [−0.3, 0.7], and centroid 3 = [0.1, 1.3],
which correspond to the LG, NL, and CR groups, respectively
(Fig. 3A).

fMRI data analysis
Preprocessing. Pre- and post-training functional imaging data were

analyzed using the Oxford Centre for Functional MRI of the Brain
Software Library v5.0 (FSL). All EPI volumes were time and motion cor-
rected. All images were resampled to a 2 mm isotropic voxel size and spa-
tially smoothed using an isotropic Gaussian kernel of 6 mm full-width
half-maximum to increase their signal-to-noise ratio. A low-frequency
filter was adjusted to the data for any physiological drift (high-pass
filter of 100 s). In parallel, fMRIprep was used to perform the quality
check of the images and calculate possible confounding factors.
Nuisance regressors included six motion parameters, estimated by
MCFLIRT motion correction (Jenkinson et al., 2002); the first six
aCompCor physiological noise regressors (Behzadi et al., 2007); and fra-
mewise displacement (Power et al., 2012).

Figure 3. Temporal variability in the SCT and clustering of subjects. A, Left, A K-means
cluster classification identified three groups, plotting the TVR as a function of the normalized
threshold differences. Blue, orange, and red dots correspond to learners with generalization,
NL, and CR learners, respectively. The diameter of the circles was determined by the initial
inter-tap variability (in ms). The higher the variability, the bigger the circle (black circles serve
as a size guide). The horizontal black dotted line corresponds to a TVR of 1 (no IDT learning).
Colored X symbols mark the centroid assigned to each group. Right, Two groups of control
subjects were identified: a group with a significant decrease in temporal variability in the
post-training SCT session, GA (n= 13, purple circles), and another with no changes in tem-
poral variability between sessions, called NG (n= 15, yellow circles). B, Temporal variability
during the pre- and post-training SCT across subjects. Changes in temporal precision are
depicted for the five groups using the color code in A with light color for pre-training and
dark color for post-training. C, Matrix of statistical differences between groups. Each element
of the matrix corresponds to the pairwise comparison between the five groups for the pre-
training (1) and post-training (2) sessions in the SCT. Notation as in Figure 3D.
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First-level analysis. An event-related analysis was carried out
(Woolrich et al., 2001). Three regressors were used tomodel the synchro-
nization, continuation, and feedback epochs. All tapping responses were
modeled as one event of the correspondent epoch. Each regressor was
convolved with a double gamma function that accounted for the hemo-
dynamic response function.

Statistical parametric maps derived from the general linear model
were created for each subject during task performance. T statistics
were calculated and then transformed into Z score maps. A first-level
analysis was run for each of the 93 subjects to define patterns of activa-
tion as compared to the baseline.

Second-level analysis. Contrast parameter estimate (COPE) maps of
the first-level analysis for the first and second runs were averaged across
trials for each session and subject. These COPEs were utilized to perform
the rest of the second- and third-level analyses (unless indicated other-
wise; Woolrich et al., 2004).

As an initial step, the mean group activation for all subjects was cal-
culated for the synchronization and continuation epochs of the pre-
training session. This was done to elucidate the common areas activated
for both cognitive processes (Fig. 7). For multiple comparisons correc-
tions, we used random field theory to calculate the minimum cluster
size with a cluster-forming threshold Z score of 2.57 (p= 0.005) and a
family-wise error rate (FWER) of 0.05. These were the parameters uti-
lized to correct for multiple comparisons for all second- and third-level
analyses.

Additionally, we ran a mixed model to test for differences between
sessions for each behavioral group. The COPE values of the first-level
analysis were used as dependent variables, the session (pre-training vs
post-training) was modeled as a fixed variable, and each subject was
used as the random variable between sessions (COPE∼Session +
(Session | ID). Synchronization and continuation epochs were analyzed
separately using the average of all trials. Models were run using Voxel:
Mass-Univariate Voxelwise Analysis of Medical Imaging Data for R
(https://github.com/angelgar/voxel). All statistical maps were corrected
for multiple comparisons using AFNI's 3dClustSim to estimate the min-
imum cluster size with a threshold Z score of 2.57 and an FWER of 0.05
(Eklund et al., 2016; Cox et al., 2017).

Multi-voxel pattern analysis
Selection of regions of interest. The first step was to identify the voxels

whose activity could accurately classify the three main groups of subjects
(LG, NL, and CR). We did this using the difference in COPE values
between the pre- and post-training sessions from the second-level anal-
ysis of the continuation epoch. Only the voxels with significant mean
activation (depicted in Fig. 7) were included in the analysis. The search-
light function from the CosmoMVPA toolbox (MATLAB) was employed
to identify the voxels with the best classification performance, and
split-half correlation was used to identify statistical significance
(Haxby et al., 2001). Areas of interest included the bilateral SMA, bilat-
eral pre-SMA, bilateral caudate, bilateral putamen, left insula, left intra-
parietal lobule, left thalamus, right V1 and V4 cortex, right dorsolateral
prefrontal cortex, and right cerebellum. From the voxels of the highest
significance, we created cubes of three voxels per side. A total of 45 cubes
were created along the aforementioned areas, carefully preventing
overlapping.

Support vector machine. With a support vector machine (SVM), we
classified the three groups of subjects. We used all the possible combina-
tions of the 45 ROIs to construct models with four ROIs (four partial
ROIs using all possible permutations from the total 45 ROIs = 1,48,995
iterations). The SVMs were carried out using 10-fold cross-validation,
and the models with an accuracy above 60% were identified. The propor-
tion of times that an area was present in these high-accuracy models was
estimated. We ended up with 15 areas persistently included in the
high-accuracy models. Additionally, as a part of the validation process,
we ran 10,000 SVM iterations, randomly selecting 16 out of the 32 LG
subjects and 16 out of the 17 CR subjects to compare the accuracy of
our model with all the data and an equal number of subjects across

groups. Finally, another 10,000 iterations were run, but we randomly
assigned the group labels to calculate the power of classification at chance
levels.

Results
Behavioral data
We tested 65 healthy subjects in a protocol that consisted of 2
SCT sessions inside the MRI scanner, which were conducted
7 d apart. Between one session and the other, the subjects per-
formed intensive IDT training for more than an hour
(Fig. 1A). During the SCT, a visual metronome (gray square)
was presented in the middle of a black screen with an interstim-
ulus interval of 850 ms. The subjects had to synchronize to the
metronome (synchronization epoch) by pressing a button for
nine taps. Afterward, they had to continue pressing the button
for 12 taps without a metronome (continuation epoch; see
Materials and Methods, Fig. 1C). During the IDT, subjects
were presented with two intervals and had to choose which
one was longer. The first interval was always presented three
times and could be either the base interval (850 ms) or the com-
parison interval. Comparison intervals were selected from a list
of four shorter and four longer intervals with respect to the
base interval (Fig. 1B).

The first goal of this study was to determine whether intensive
practice improved interval discrimination performance. Some
subjects showed an increasing psychometric function slope as
training progressed (Fig. 2A, left panel), which is consistent
with a decrease in the discrimination threshold due to training.
Other subjects, however, failed to exhibit this progressive
increase (Fig. 2A, right panel). Thus, two general groups of sub-
jects were observed: learners [LG; n= 32; power regression: m=
−0.2779, R2 = 0.9926, p < 0.0001 (Fig. 2B, top panel)], who met
the learning criteria (see Materials and Methods), and NL (n=
33; power regression: m= 0.0203, R2 = 0.0482, p= 0.6361
(Fig. 2B, middle and bottom panels)], who did not. As described
below, we identified two NL subgroups based on their perfor-
mance during the SCT pre- and post-training sessions: the
proper NL and the CR subjects. Both showed a low initial interval
discrimination threshold, an unchanged threshold as a function
of the training day (Fig. 2B), and a slight increase in this param-
eter between the initial and final training sessions (Fig. 2C,D). In
contrast, the LG group showed larger initial discrimination
thresholds and a dramatic increase in interval acuity with train-
ing (Fig. 2C,D).

The next step was to determine whether improved perfor-
mance in the time perception task could be accompanied by a
gain in the SCT. The hypothesis was that the LG group would
decrease the temporal variability of their ITIs during the post-
training session of the SCT, whereas the NL group would show
similar temporal variability between the post- and pre-training
sessions. Consequently, in Figure 3A, we plotted the normalized
difference in the discrimination threshold between the last and
first days of IDT training against the TVR of the continuation
epoch of the SCT (see Materials andMethods). We chose contin-
uation variability over synchronization data as the changes
between sessions were greater in the former (see below). TVR
is a measure of temporal generalization (the pre-training/post-
training ITI variance ratio), with values above one indicating a
decrease in temporal variability in the post-training with respect
to the pre-training. Complex intersubject differences are evident
in Figure 3, and an iterative K-means clustering determined the
existence of more than two groups. Values from one to five
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were tested to find the best number of groups for our data. The
smaller Bayesian information criterion (−24.1776) indicated
that three was the most parsimonious clustering index, as fol-
lows: (1) 32 subjects who reduced their discrimination threshold
and ITI variability (LG with a cluster centroid x=−1.2801, y=
1.2359); (2) 16 subjects who did not reduce their discrimination
threshold or ITI variability (NL with a cluster centroid in x=
0.0182, y = 0.7380); and (3) 17 subjects who did not reduce their
discrimination threshold but were able to reduce their ITI vari-
ability (CR with a cluster centroid in x=−0.1173, y = 1.3486).

Since the CR group showed a gain in temporal variability in
the SCT between the pre- and post-training sessions without
learning effects on the IDT, we hypothesized that these subjects
experienced operational learning from practicing the SCT twice.
Consequently, we ran a control group of subjects that executed
the SCT in the MRI scanner twice, 1 week apart but with no
IDT training. As predicted, approximately half of the subjects
(n= 15; called NG) showed no changes in temporal variability
across the two SCT sessions, whereas the other half [n = 13;
GA] showed a statistically significant decrease in temporal vari-
ability in the second session (Fig. 3A–C), probably due to the
benefit of practicing the SCT in the first session.

Once the three groups were defined, we tested for statistically
significant differences between groups during the IDT. A two-
way repeated-measures ANOVA on the interval discrimination
threshold showed significant main effects for session (F2, 62 =
51.786, p < 0.0001) and for session × group interaction (F2, 62 =
63.289, p≤ 0.0001) (Fig. 2D). Post hoc paired t tests showed a
significant threshold reduction for the LG group (t31 = 13.8507,
p < 0.0001). No significant changes were found for the NL (t15
= 0.1284, p= 0.8995) or CR (t16 =−0.0734, p= 0.9424) groups
(see the significant matrix in Fig. 2D). Additionally, pre-training
discrimination thresholds were significantly high for the LG
group compared to those of the NL (t46 = 4.2605, p < 0.0001)
and CR groups (t47 = 2.8884, p= 0.0058). In addition, there
were not significant differences between NL and CR (t31 =
−1.5069, p= 0.1420; Fig. 2D). Hence, these results confirm the
existence of a large group of learners with a higher initial discri-
mination threshold that is reduced after a week of intense interval
discrimination training. On the other hand, the NL and CR sub-
jects started training with a significantly low initial discrimina-
tion threshold, indicating high baseline discriminant
capabilities that could account for their inability to improve their
performance after training due to a floor effect.

The SCT is an explicit timing task that allowed us to gather the
following behavioral parameters: asynchronies, constant error,
and temporal variability (see Materials and Methods for defini-
tions). As all participants (experimental and control) performed
both sessions of the SCT, the following analyses were carried out
to compare them.

The mean asynchronies (see Materials and Methods) during
the synchronization epoch were plotted as relative phases on
the unit circle across groups and sessions (Fig. 4). We found
that the mean resultant was close to one, indicating a consistent
synchronization to the metronome across all groups [Rayleigh
test for the pre-training asynchronies: z= 23.7601, p < 0.0001
(LG); z= 14.6747, p < 0.0001 (NL); z= 15.0941, p < 0.0001 (CR);
z= 12.0283, p < 0.0001 (GA); z= 12.8848, p < 0.0001, (NG).
Post-training asynchronies: z= 28.4821, p < 0.0001 (LG);
z = 14.8011, p < 0.0001 (NL); z= 15.3140, p < 0.0001 (CR);
z = 11.7674, p < 0.0001 (GA); z= 14.5736, p < 0.0001 (NG)]. In
addition, the five groups in the pre- and post-training sessions
showed negative mean circular asynchronies [the one-sample

mean angle test was significantly different from zero for all
groups and sessions (p < 0.05)] except for the LG group in the
pre-training session, reflecting strong predictive behavior in all
subjects in both SCT sessions. Finally, a Harrison–Kanji test
(two-way ANOVA for circular data) on the asynchronies showed
no significant main effect for the group (F4, 88 = 0.8536, p=
0.4931) or session (F1, 88 = 1.2374, p= 0.2675). These findings
suggest that the predictive mechanisms behind consistent and
negative mean asynchronies are not influenced by the generaliza-
tion of a time discrimination task or exclusively being exposed to
an initial SCT session.

Next, we compared the constant error, a measure of timing
accuracy. A three-way ANOVA, with constant error as the
dependent variable, did not show a significant main effect for
group × session × epoch (F4, 88 = 0.1223, p= 0.8850). These
results support the notion of an accurate estimation of the inter-
val during the synchronization and continuation epochs across
groups and sessions, with no performance differences between
them (Fig. 5A,B). Hence, the interval discrimination learning
did not generalize to changes in tapping accuracy across groups
of subjects or SCT epochs.

The temporal variability showed that interval discrimination
training differentially modifies the tapping precision of the sub-
jects during the SCT (Fig. 3D,E). A three-way ANOVA (epoch,
session, and group) with temporal variability as the dependent
variable showed a significant group × session × epoch interaction
(F4, 88 = 2.9789, p= 0.0233) and a group × session interaction
(F4, 88 = 17.541, p < 0.0001). Time variability changes were larger
but not limited to the internal guided epoch of the task (contin-
uation), as previously reported (Meegan et al., 2000; Planetta and
Servos, 2008). Indeed, post hoc paired t tests showed during the

Figure 4. Asynchronies. Asynchronies for the synchronization epoch for the five groups
during the pre- (A) and post- (B) training sessions. No significant differences were found
between groups or sessions.

Figure 5. SCT constant error. A, Synchronization epoch. B, Continuation epoch.
Interquartile box plots of the constant error calculated for the five groups during the pre-
and post-training sessions (color code as in Fig. 3C). The horizontal black dotted line is a ref-
erence at zero constant error. No significant session × group interactions were found in the
two epochs.
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synchronization epoch a significant reduction of temporal vari-
ability between the pre- and post-training sessions for the LG
(t31 = 2.9929, p= 0.0054) and CR (t16 = 2.2858, p= 0.0362)
groups, while the NL group (t15 =−0.9346, p= 0.3648) exhibited
no statistically significant changes between sessions (Fig. 6C).
Importantly, paired t tests for the continuation epoch showed
that the LG (t31 = 7.9742, p < 0.0001) and CR (t16 = 4.6920, p=
0.0002) groups presented a significant reduction in their time
variability between sessions (Fig. 6D). In contrast, the NL group
(t15 =−5.3636, p < 0.0001) displayed a statistically significant
increase in the variance of their performance.

The initial temporal variability showed significant group
differences during the SCT continuation epoch (F4, 88 = 2.53,
p = 0.0457). Post hoc paired t tests showed lower inter-tap vari-
ability for NL subjects compared to LG (t46 =−2.3103, p=0.0254),
CR (t31 =−2.4004, p=0.0226), and GA (t27 =−2.3554, p=0.0260)
subjects, but no significant differences with NG subjects
(t30 =−1.0381, p = 0.3075). These results suggest that the NL
group had a preexistent tapping skill with low initial temporal
variability.

We did not find significant correlations between the level of
musical skill and the clustering of the three main groups. Every
subject responded to a questionnaire regarding their musical
training, sports practice, and videogame experience. Our sample
had basic elementary school musical training but did not include
professional musicians. Mean hours of weekly practice and years

of training are included in Table 1. Although there is a bias for
higher scores in the NL group, no statistically significant effects
of group were found for the tested skills (Kruskal–Wallis tests
using musical training, sports practice, and videogame experi-
ence as dependent variables and groups as factors).

Overall, these results support the hypothesis that intense IDT
training is an important mechanism to effectively reduce time
variability in the motor tapping task, especially during the con-
tinuation epoch, probably due to timing generalization. In addi-
tion, there were clear individual differences, with not only a large
group of subjects learning during the IDT and generalizing to the
SCT but also a group of non-learning IDT subjects with no
changes in the SCT and a group that showed no learning during
the IDT but did show procedural changes during the two sessions
of the SCT (CR). Finally, the subjects in the control task without
IDT training were also clustered into individuals with and with-
out practice effects in the SCT continuation epoch. Next, we mea-
sured the changes in the BOLD signal between sessions across the
experimental and control groups.

fMRI data
Our first approach to the functional imaging data was to deter-
mine the brain areas involved in the SCT before IDT training
using whole-brain analysis. All subjects (experimental and con-
trols, n= 93) were grouped together, and the mean activation
was calculated for both the synchronization and continuation

Figure 6. SCT temporal variability. A, Interquartile box plots of the temporal variability during the synchronization epoch for the five groups during the pre- and post-training sessions (color
code as in Fig. 3C). The horizontal black dotted line is a visual reference at 60 ms. B, Temporal variability as in A for the continuation epoch. C,D, Matrix of statistical differences between groups
for A and B, respectively. Each element of the matrix corresponds to the pairwise comparison (t test) between the five groups for the pre-training (1) and post-training (2) sessions in the SCT.
Notation as in Figure 3D. Note the large decrease in temporal variability in the post-training for the LG, CR, and GA groups, especially during the continuation epoch
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epochs. The areas that showed a statistically larger activation
during the SCT with respect to the rest of the conditions included
the bilateral SMA, bilateral pre-SMA, left M1, left S1, bilateral
dorsal prefrontal cortex, bilateral ventromedial prefontal cortex,
left planum temporale, bilateral putamen, bilateral BA44 (Broca's
area), bilateral insula, bilateral visual cortices, bilateral cerebellar
lobules I–VI, and the left Crus I (Fig. 7, Table 2). These results
indicate that the execution of motor timing tasks relies on a
cortico-basal ganglia circuit, as well as a cerebellar circuit, which
are key elements of the core timing system.

Subsequently, a third-level mixed model analysis was per-
formed between the pre- and post-training sessions for each
group. This model included separate subject-intercepts across
sessions, improving statistical sensitivity. Notably, the NL group
showed an increase in activity during the post- versus pre-
training session in the bilateral pre-SMA and left caudate–puta-
men during the continuation epoch (Fig. 8A, Table 3). In addi-
tion, the CR group showed a post-training > pre-training
cluster in the left caudate–putamen that might mediate CRmotor
learning, while the NL group exhibited a pre-training > post-
training cluster in the right cerebellar cortex VI that could inter-
nalize rhythmic timing experience in this group before the exper-
iment. No changes in hemodynamic signal were found between
sessions during the synchronization epoch across groups or in
the continuation of the controls. These results suggest that the
successful transfer of learning from interval discrimination to
more precise, internally driven tapping in the LG group depends
on a greater engagement of the pre-SMA and caudate–putamen.

To further scrutinize the role of these areas in the
mechanisms of learning and generalization, motor practice,

and the preexistent activation patterns before IDT training, we
carried out a decoding procedure in which the resulting ROIs
from a whole-brain searchlight were used to train an SVM

Table 1. Musical, sports, and video game experience for LG, NL, and CR groups

Group
% of subjects with
musical training

Years of
practice

Hours of weekly
training

% of subjects
practicing sports

Years of
training

Hours of weekly
training

% of subjects with videogame
experience

Hours of weekly
practice

LG 41.9 1 2.98 90.3 4.54 7.12 48.38 1.9
NL 66.7 2.16 6.43 93.3 6.47 7.83 66.66 11.63
CR 47.1 1.83 4.97 100 7.08 8 58.82 8.17

Percentage of subjects within each group with musical, sports, and video game experience, years of practice, and hours of weekly practice.

Figure 7. Pre-training activation for the SCT. Common activation for the synchronization and continuation epochs. Activation maps are displayed as Z scores with a threshold of p< 0.005,
cluster-level FWE p< 0.05, overlaid on the MNI template.

Table 2. Activation locations for the SCT

Volume (mm3) Region X Y Z Z score

6,63,680 Left M1 −40 −20 54 15.2416
Left SMA −4 −4 62 13.6882
Left BA 44 −46 2 4 12.9426
Right pre-SMA 6 −4 70 12.9316
Left putamen 24 2 6 9.5294
Left substantia nigra −8 −20 −12 3.3573

436,864 Right cerebellum V 12 −52 −20 15.4306
Right cerebellum VI 22 −56 −24 15.4025
Right cerebellum vermis 6 −54 −10 14.5481
Left cerebellum VI −26 −64 −22 13.1883
Right V3 30 −92 2 12.3649
Left V3 −28 −98 −6 11.2594

308,480 Right BA 44 52 14 4 12.0211
Right dPMC 56 −2 46 11.4111
Right IFG 42 42 −4 8.6029

101,184 Right planum temporale 60 −32 22 10.1519
Right IPL 54 −42 −56 7.8393

77,376 Left IFG −44 52 14 7.4687
36,736 Left thalamus −16 −16 16 9.2133

Right thalamus 14 −6 12 7.8774
32,128 Right putamen 24 −2 10 9.6642

Right GP 18 0 −2 7.4482

Co-occurrent activity during both the synchronization and the continuation epochs during the pre-training session
(threshold at p< 0.05, cluster-level FWE at p< 0.005). Spatial coordinates are in mm according to MNI 152 space.
V3, visual cortex 3; IPL, inferior parietal lobule; IFG, inferior frontal gyrus; M1, primary motor cortex; dPMC, dorsal
prefrontal cortex; SMA, supplementary motor area; BA, Brodmann area.
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algorithm to classify the three main subject groups: LG, CR, and
NL. We identified 15 ROIs with robust classification power that
include voxels in the SMA, pre-SMA, putamen, caudate, globus
pallidus (GP), and cerebellum (Fig. 9A,C; see Materials and
Methods), in accordance with the above mixed model results.
Importantly, the decoding accuracy using all subjects (LG, 32;
CR, 17; and NL, 16; Fig. 9B, black dot) and using 16 subjects
per group (randomly picked, 10,000 iterations; Fig. 9B, green
dot) was close to 70%, quite above the chance level (theoretical
= 33.3%; actual with random permutations; Fig. 9B, pink
dot). Therefore, these results support the hypothesis that the
cortico-basal ganglia circuit and the cerebellum are deeply
involved in defining the behavioral properties of the three groups
of subjects.

Figure 8. Functional changes between pre- and post-training identified with mixed model analyses. A, LG group post-training > pre-training. Contrast map for 32 subjects. B, CR group
post-training > pre-training. Contrast map for 17 subjects. C, NL group pre-training > post-training. Contrast map for 16 subjects. BOLD changes seen during the continuation epoch. Activation
maps are displayed as Z scores with a threshold of p< 0.005, cluster-level FWE p< 0.05, overlaid on the MNI template.

Table 3. Activation locations for the pre-training versus post-training contrast

Groups
Volume
(mm3) Region X Y Z

Z
score

LG post-training >
pre-training

14,720 Pre-SMA-L 1 9 45 3.87
Pre-SMA-R 9 5 65 3.48

9,344 Left caudate −11 5 5 3.6
Left GP −13 3 1 3.16

CR post-training >
pre-training

6,144 Left putamen −19 3 9 3.24
Left caudate −11 3 15 3.23

NL pre-training >
post-training

9,280 Right
cerebellum
VI

19 −55 −25 3.47

Post-training > pre-training for the LG and CR groups and pre- > post-training for NL group during the
continuation epoch (threshold at p< 0.05, cluster-level FWE at p< 0.005). Coordinates are in MNI space,
expressed in mm. SMA, supplementary motor area.
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Discussion
The present research examined changes in neural activity associ-
ated with the transfer of learning from perceptual to motor tim-
ing and compared them with the hemodynamic response of NL
subjects, CR subjects, and a group of control subjects that per-
formed the tapping task but did not undergo intensive time dis-
crimination training. Our study supports four conclusions. First,

intense training in an IDT produced an increase in the acuity of
time perception in the LG group. Second, there is a strong corre-
spondence between the reduction of the discrimination threshold
in the IDT and the reduction of temporal variability of the pro-
duced intervals, mainly during the internally driven epoch of the
SCT in the LG group. Third, initial interval discrimination
performance accounted for the lack of learning in NL and CR

Figure 9. SVM classification of the LG, CR, and NL groups using the delta of activation between the pre- and post-training sessions. A, Location of the 15 ROIs that produced larger accuracy in
the classification of the three groups. The color scale corresponds to the log probability that each ROI participated (alongside three other randomly selected ROIs) in a significant classification
iteration. B, Percentage of the group's classification accuracy using the fifteen ROIs of A in the SVM. The black dot corresponds to the accuracy using an SVM with the total number of subjects per
group, namely, 32 LG, 16 NL, and 17 CR. The green circle corresponds to the mean (bar -SEM; 10,000 iterations) of accuracy when 16 LG subjects were randomly selected. The pink circle depicts
the mean accuracy (bar + SEM; 10,000 iterations) when the classification algorithm was run using random group labels, and the dotted line represents the theoretical chance level. C, The radar
plot that shows the mean COPE value for the continuation epoch per group for the ROIs in A. The number at the beginning of the label corresponds to the numeric label in panel A. Caud, caudate;
GP, globus pallidus; Put, putamen; SMA, supplementary motor area; VI, cerebellum VI lobule.
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subjects, evidencing a floor effect on time perception. Finally,
functional changes occurred in the bilateral pre-SMA and left
caudate–putamen when there was a learning transfer from
time discrimination to tapping precision during the continuation
epoch. Thus, an increase in activity in the cortico-basal ganglia
circuit was observed between the post-training and pre-training
sessions only in the LG group. In addition, we found a post-
training > pre-training increase in the left caudate–putamen in
the CR group and a pre-training > post-training increase in the
right cerebellar cortex VI of NL subjects. The decoding analysis
corroborated the role of these areas in defining the behavioral
profile of the three groups of subjects. No BOLD increases
were found between sessions for the control groups, and no ses-
sion changes were found for any of the groups during the syn-
chronization epoch.

Our psychophysical results revealed that a learning process
occurred during the 7 consecutive days of intensive training in
the IDT. Notably, the learning function of the present study is
similar to the time course of learning for auditory, visual, and
somatosensory interval discrimination (Kristofferson, 1980;
Wright et al., 1997; Nagarajan et al., 1998; Westheimer, 1999;
Karmarkar and Buonomano, 2003). All these experiments
included intensive daily training for five or more days. With
this protocol, learning is characterized by an increase in time per-
ception acuity and occurs mainly during an initial rapid
improvement stage that lasts for 2 or 3 d, followed by a slower
improvement phase that spans the remaining sessions.
Nevertheless, important individual differences are also evident
in these studies, with a proportion of participants showing no
ability to learn and a decrease in their temporal precision during
time perception training. In our case, the LG and NL groups
allowed us not only to investigate not only the generalization
rules of timing from perception to production but also to contrast
the neural circuits involved in learning transfer versus those
involved in the SCT practice during the pre- and post-training
sessions.

The SCT is a prototypical paradigm that contains an initial
tapping synchronization epoch, where subjects are entrained to
an isochronous metronome, followed by an internally driven
continuation epoch (Wing, 2002; Repp, 2005). Thus, a natural
question is whether learning generalization from time perception
was present in either or both SCT epochs. Performance in this
tapping task can be characterized in terms of precision (temporal
variability), accuracy (constant error), and predictability (asyn-
chronies specific to the synchronization epoch; Zarco et al.,
2009; Gámez et al., 2018; Yc et al., 2019). Importantly, the perfor-
mance gain in temporal precision in our visual IDT was trans-
ferred as an increase in timing precision mainly during the
internally driven period of the SCT. No generalization was
observed in the timing accuracy or predictability during both
SCT epochs. Furthermore, the increase in timing precision of
the continuation epoch due to learning transfer is evident in
the LG group but not in the NL group. Therefore, these results
revealed a specific mechanism for time generalization in LG sub-
jects: intensive training produced a more robust neural represen-
tation of an interval and a concomitant increase in perceptual
acuity for this duration. In turn, the improved neural representa-
tion of the interval is transferred as an increase in temporal pre-
cision when subjects access this neural signal to produce
internally driven rhythmic movements.

In the present study, we found a specific increase in activation
in the bilateral pre-SMA and left caudate–putamen between the
post- and pre-training sessions for the LG group. These results

suggest that the cortico-basal ganglia circuit is responsible for
the learning transfer from time discrimination to the internally
driven epoch of the tapping task. Many functional imaging stud-
ies have documented the fundamental role of medial premotor
areas (SMA-proper and pre-SMA) and the putamen in timing,
showing increments in activity in diverse interval- and beat-
based timing tasks (Rao et al., 1997; Bengtsson et al., 2005;
Jantzen et al., 2007; Karabanov et al., 2009; Coull et al., 2013;
Konoike et al., 2015; Mendoza et al., 2018). Our findings indicate
that the pre-SMA and caudate–putamen are critical nodes for the
generalization of an acquired timing precision skill. The main
question, then, is how this could be achieved. The learning gen-
eralization literature concurs with the principle of lack of gener-
alization in the time domain, where the learned gain in temporal
precision does not transfer for durations differing for >50% of the
trained interval. Indeed, in a previous study, we found that train-
ing in an interval reproduction task produced a Gaussian gener-
alization function, with large generalization for closely
neighboring untrained intervals and no generalization for inter-
vals distant from the trained duration (Bartolo and Merchant,
2009). Therefore, these observations suggest the existence of neu-
ral circuits that are tuned to a specific time length. In fact,
interval-tuned cells have been recorded in pre-SMA/SMA
(Mita et al., 2009; Merchant et al., 2013b; Crowe et al., 2014;
Gámez et al., 2019), putamen (Bartolo et al., 2014), caudate,
and cerebellum (Kunimatsu et al., 2018). Furthermore, different
functional imaging studies have demonstrated the existence of a
topographic representation of time where neuronal units selec-
tively respond to specific durations, generating chronotopic
maps on the surface of the humanmedial premotor and posterior
parietal areas (Protopapa et al., 2019; Harvey et al., 2020). Thus,
the increase in timing precision of an interval during learning
and generalization may depend on an increase in the density of
neurons tuned to this interval within the chronotopic map, a
decrease in the width of the tuning function of these cells, and/
or a concomitant change in the precision of neural population
signals across areas of the core timing circuit (Bueti et al., 2008;
Merchant et al., 2014b, 2015b; Sohn et al., 2019).

Strong individual differences in the pattern of IDT learning
and the changes in tapping precision during the two SCT sessions
required us to cluster subjects into three groups. The heteroge-
neous learning generalization profile suggests that subjects pos-
sess different abilities to process temporal information due to
genetic or learned factors. We suggest that these factors modulate
how the core timing network encodes and predicts timing events
and how this timing network dynamically interacts with sensory
and cognitive areas to define the precision in timing performance
across timing paradigms. The fact that only LG subjects showed
activity changes in the cortico-basal ganglia circuit, which is asso-
ciated with the transfer of learning from sensory to motor timing,
supports the notion that the ability to benefit from intervention
protocols depends on the individual properties of the core timing
network. Hence, the proposed plastic changes in the interval tun-
ing of the medial premotor area and caudate–putamen during
our time generalization can be a functional signature of the LG
group. Furthermore, the hemodynamic changes in these areas
were specific to the continuation epoch of the SCT, where the
behavioral gains were greater. On the other hand, we found a cer-
ebellar increase in activity during the pre-training with respect to
the post-training in the NL group. Thus, the preexisting tapping
ability of NL subjects might be due to previous rhythmic timing
skills stored in this area, which is consistent with the role of the
cerebellum in timing and motor learning (Tanaka et al., 2021).
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Finally, in the CR group, we found a separate set of voxels in the
caudate–putamen that showed increased activity during the post-
training with respect to the pre-training session. This suggests
that the caudate–putamen is engaged in determining the practice
effects of timed tapping in two sessions (Lehéricy et al., 2005;
Bosnell et al., 2011; Toyomura et al., 2015). Notably, the lack of
coordinated activation of the pre-SMA and caudate–putamen in
CR andGA subjects, even when they showed a gain in tapping pre-
cision in the second SCT session, supports the notion of a specific
engagement of the cortico-basal ganglia circuit in the learning
transfer from perceptual to motor timing.
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