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A B S T R A C T

Objective: Temporal lobe epilepsy (TLE) is known to affect large-scale structural networks and cognitive function
in multiple domains. The study of complex relations between structural network organization and cognition re-
quires comprehensive analytical methods and a shift towards multivariate techniques. Here, we sought to identify
multidimensional associations between cognitive performance and structural network topology in TLE.
Methods: We studied 34 drug-resistant adult TLE patients and 24 age- and sex-matched healthy controls. Partic-
ipants underwent a comprehensive neurocognitive battery and multimodal MRI, allowing for large-scale con-
nectomics, and morphological evaluation of subcortical and neocortical regions. Using canonical correlation
analysis, we identified a multivariate mode that links cognitive performance to a brain structural network. Our
approach was complemented by bootstrap-based hierarchical clustering to derive cognitive subtypes and asso-
ciated patterns of macroscale connectome anomalies.
Results: Both methodologies provided converging evidence for a close coupling between cognitive impairments
across multiple domains and large-scale structural network compromise. Cognitive classes presented with an
increasing gradient of abnormalities (increasing cortical and subcortical atrophy and less efficient white matter
connectome organization in patients with increasing degrees of cognitive impairments). Notably, network to-
pology characterized cognitive performance better than morphometric measures did.
Conclusions: Our multivariate approach emphasized a close coupling of cognitive dysfunction and large-scale
network anomalies in TLE. Our findings contribute to understand the complexity of structural connectivity
regulating the heterogeneous cognitive deficits found in epilepsy.
1. Introduction

Temporal lobe epilepsy (TLE) is the most common drug-resistant
epilepsy in adults and traditionally associated to mesiotemporal scle-
rosis, a lesion affecting the hippocampus and adjacent mesial structures
(Blümcke et al., 2013). In addition to seizures, patients suffer from
cognitive impairments that severely impact everyday functioning and
wellbeing (Lin et al., 2012). In fact, TLE has traditionally been investi-
gated by cognitive neuroscience as an important model to understand
human memory and language dysfunction resulting from hippocampal
damage (Hoppe et al., 2007).

Recent years have seen an evolution in our understanding of the
cognitive landscape and structural compromise in TLE, fostered by an
increasing administration of comprehensive neurocognitive phenotyping
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batteries and the advent of high-resolution and multimodal neuro-
imaging (Dabbs et al., 2009; Hermann et al., 2007). At the level of
cognitive function, TLE is now recognized to perturb multiple domains
not limited to memory and language processing (Helmstaedter and Elger,
2009; Hermann et al., 2007) These findings are paralleled by mounting
neuroimaging evidence suggesting diffuse grey and white matter ab-
normalities beyond the mesial temporal lobe, affecting a distributed
network of cortical and subcortical structures as well as their connections
(Bonilha et al., 2013; Lin et al., 2007; Whelan et al., 2018). While some
studies have shown compromise of both white and grey matter regions in
TLE patients relative to the degree of cognitive dysfunction (Diehl et al.,
2008; McDonald et al., 2014, 2008; Otte et al., 2012; Riley et al., 2010),
we lack a comprehensive understanding on the association between the
extent of network reorganization and overall cognitive performance.
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Associations between brain structure and cognitive performance are
likely complex, particularly when multiple metrics are used for neuro-
anatomical profiling on the one hand, and cognitive phenotyping on the
other hand. Inter-variable collinearities may furthermore challenge
interpretability, and variables could lose their weight when tested indi-
vidually. Multivariate analysis solves this problem by relating all mea-
sures in a single, compact model (McIntosh and Mi�si�c, 2013). Although
converging evidence suggest an association between network organiza-
tion and cognitive impairments in TLE (Vaessen et al., 2012), virtually no
previous research leveraged multivariate techniques to identify salient
brain cognition associations in the condition. It remains unknown if there
is a structural white matter network pattern associated with the cognitive
decline seen in patients. We hypothesize that whole brain structural
network abnormalities seen in TLE are closely associated with the het-
erogeneous cognitive performance.

We examined the interplay between multidimensional cognitive
performance and structural network compromise in TLE patients and
healthy controls. All participants underwent state-of-the-art multimodal
magnetic resonance imaging (MRI) and neurocognitive assays. Multi-
variate Canonical Correlation Analysis (CCA) evaluated associations be-
tween multi-domain cognitive impairment and whole brain structural
connectome reorganization. These models were complemented by un-
supervised clustering techniques to identify cognitive subtypes in the TLE
cohort, for which we identified morphological and network-based sig-
natures. We leveraged bootstrap-based hierarchical clustering stability
assessments as well as cross-validation techniques to strengthen robust-
ness and replicability of discovered network substrates. Finally, we made
all code and data related to our study openly available.

2. Materials and methods

2.1. Participants

The Ethics Committee of the Neurobiology Institute of the Uni-
versidad Nacional Aut�onoma de M�exico approved this project (protocol
code 019.H-RM) and written informed consent was obtained from all
participants in the study according to the Declarations of Helsinki.

We recruited 34 adult ambulatory patients with drug-resistant TLE
(Age ¼ 29.7 � 11.1 years; 22 females) and 24 age- and sex-matched
healthy controls (Age ¼ 32.8 � 12.7 years; 18 females). Our cohort
included 12 right TLE, 18 left TLE, and 4 bilateral TLE patients lateralized
by seizure history and semiology, inter-ictal EEG recordings, and neu-
roimaging. All participants were right-handed native Spanish speakers.
They did not have MRI contraindications nor other neurological
comorbidities. Clinical features were obtained through a questionnaire-
oriented interview upon referral (age at disease onset ¼ 14.4 � 9.3
years; seizure frequency per month¼ 4.2�þ7.1, number of anti-epileptic
drugs ¼ 1.6 � 0.6, 35.2% had a history of febrile seizures).

2.2. Data acquisition

2.2.1. Cognition
All participants underwent a comprehensive battery of cognitive

tests: Wechsler Adult Intelligence Scale (WAIS-IV) and Wechsler Memory
Scale (WMS-IV). We utilized the following index scores: auditory mem-
ory (AMI), visual memory (VMI), visual working memory (VWM), im-
mediate memory (IMI), delayed memory (DMI), verbal comprehension
(VCI), working memory (WMI), processing speed (PSI), and perceptual
reasoning (PRI). Reported indices were normalized relative to a Mexican
population and adjusted by age and education level. Details of the
cognitive evaluation are described elsewhere (Rodríguez-Cruces et al.,
2018).

2.2.2. Magnetic resonance imaging
Images were acquired with a 3 T Philips Achieva TX scanner with a

32-channel head coil. T1-weighted volumes (three-dimensional spoiled
2

gradient echo) had a voxel resolution of 1 � 1x1 mm3, repetition time
(TR) of 8.1 ms, echo time (TE) of 3.7 ms, flip angle of 8�, and field of view
(FOV) dimensions of 179 � 256 � 256 mm3. Diffusion weighted images
(DWI) were acquired with echo-planar imaging (EPI) and a 2 � 2x2 mm3

voxel resolution, TR ¼ 11.86 s and TE ¼ 64.3 ms, and FOV ¼ 256 � 256
� 100 mm3. DWI were sensitized to 60 different diffusion gradient di-
rections (b ¼ 2000 s/mm2); one b ¼ 0 s/mm2 volume was also acquired.
An additional b ¼ 0 s/mm2 volume was obtained with reversed phase
encoding polarity to account for geometric distortion corrections.

2.3. Image processing

2.3.1. Diffusion MRI processing
a) Diffusion weighted volumes (DWI) were denoised via data redun-

dancy criteria from linear dimensionality reduction (Veraart et al., 2016),
followed by non-uniform intensity normalization (Tustison et al., 2010).
Reverse phase encoding from two b ¼ 0 s/mm2 volumes was used to
estimate and correct for geometric distortions. DWI volumes were line-
arly registered to the b ¼ 0 s/mm2 images for motion correction and
diffusion gradient vectors were rotated according to the transformation
matrix.

b) Structural connectome parameterization. Using FreeSurfer v5.3.0,
MRtrix 3.0, and FSL 5.0.6, we calculated individual structural connec-
tivity matrices. Calculations were based on corrected DWI data and
leveraged Spherical-deconvolution Informed Filtering of Tractograms,
SIFT (Smith et al., 2013), with anatomically constrained tractography
models, ACT (Smith et al., 2012). A total of 162 nodes were defined
merging the cortical parcellation from the Destrieux Atlas and volBrain’s
subcortical segmentation (Supplementary Table 1). Whole brain trac-
tography was first calculated using ACT with 20 million streamlines
seeded from the grey-white matter interface, with maximum deviation
angle of 22.5�, maximum length of 250 mm, minimum length of 10 mm.
Tractograms were filtered with SIFT to 2 million streamlines (Fig. 1 top
left). Connection weights between nodes (NSIFT) were defined as the
streamline count following SIFT (Smith et al., 2015a,b; Yeh et al., 2016,
Fig. 1 top right), a procedure that has shown high reproducibility (Roine
et al., 2019).

Connectivity matrices were analyzed using the igraph R package
(igraph.org/r). We focused on path length, clustering coefficient, and
degree centrality, the most widely used graph-theoretical parameters in
the TLE literature (Bernhardt et al., 2015; Tavakol et al., 2019), also
given that these measurements offer a compact description of global
network topology and local connectivity embedding (Rubinov and
Sporns, 2010). We computed the clustering-coefficient (C) as a measure of
segregation, which provides information about the level of local con-
nections in a network. The characteristic path length (L)measured network
integrationwith short path lengths indicating globally efficient networks.
Dijkstra’s algorithmwas used to calculate the inverse distancematrix and
infinite path lengths were replaced with the maximum finite length.
Finally, we calculated degree centrality (k) to characterize the relevance of
the individual nodes. The current work was based on unthresholded,
weighted networks. Of note, systematic evaluation of using different
matrix thresholds showed high stability for thresholds above 60% of all
possible connections (Supplementary Fig. 1).

2.3.2. Structural MRI processing
a) Hippocampal volumetry. T1-weighted volumes were processed using

volBrain (volbrain.upv.es), which provides automated patch-based hip-
pocampal and subcortical delineation with high accuracy in controls and
TLE patients. Hippocampi were individually inspected by a trained rater,
and hippocampal volumes were normalized by intracranial volume.

b) Cortical thickness analysis. Cortical thickness was measured for each
participant using FreeSurfer v5.3.0. T1-weighted images were pre-
processed through non-local-means denoising (Coup�e et al., 2008) and
N4 bias field correction (Tustison et al., 2010) prior to FreeSurfer seg-
mentation. After processing, pial and white matter surfaces were visually

http://volbrain.upv.es


Fig. 1. Methods.
Connectome generation. Top left: Whole-brain connectomes were built using mrtrix, based on streamline counts derived from anatomically constrained tractog-
raphy and spherical deconvolution informed filtering of tractograms (SIFT). Nodes were defined by merging the cortical segmentation of Destrieux Atlas and Vol-
brain’s subcortical segmentation. Connection weight Wij was defined as the streamline count between two nodes ij following SIFT. Top right: To study network
topology, degree centrality, clustering coefficient, and characteristic path length were calculated based on the adjacency matrices. Cluster coefficient was calculated
using the Onnela algorithm.
Multivariate analysis: canonical correlations. A. For each participant, the cognitive scores, excluding IQ were combined into matrix Y. Similarly, the nodal network
measurements associated with a brain region were concatenated to a matrix X (panel C). B. The canonical variates are synthetic predictors (V and U) that maximize
the correlations between the cognitive scores and the network parameters. D. The correlation between the first canonical variate U1 and V1 is referred as the first
canonical correlation ρ1. E. The canonical loadings measure the linear correlation between an original variable of the cognitive scores Yj or the network parameters Xj

and a canonical variate.
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inspected by a qualified trained rater and corrected if necessary. Indi-
vidual surfaces were registered to a surface template with 20,484 surface
points (fsaverage5) and a surface-based Gaussian diffusion filter with a
full width at half maximum of 20mmwas applied, similar to our previous
studies (Bernhardt et al., 2010).
2.4. Multivariate analyses

a) Regularized canonical correlation analysis. Canonical correlation
analysis (CCA) assessed multivariate associations between cognitive
scores and structural connectome measures (Fig. 1 bottom). Unlike
principal components analysis (PCA) that reduces the number of vari-
ables in one set to components that emphasize variation in the data, CCA
3

investigates the overall correlation between two multivariate datasets.
CCA was recently employed in a large cohort of healthy adults to identify
associations between neuroimaging-based connectivity measures on the
one hand, and lifestyle, demographic, and psychometric measures on the
other hand (Smith et al., 2015b).

First, we built a CCA to evaluate associations between connectome-
derived parameters (k, C, and L) of all brain regions, and cognitive per-
formance. Network parameters were concatenated into a one row vector
per subject, resulting in a matrix X (subjects x network measurements).
We excluded IQ because of its high correlation with all the remaining
scores, resulting in a matrix Y (subjects x cognitive measures).

The main objective of CCA is to estimate canonical variates (U, V) that
maximize the correlation between network parameters-X and cognitive
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scores-Y (Fig. 1B bottom and Supplementary Fig. 2A). Resulting canonical
variates can be ordered (U1-Un, V1-Vn), with the first explaining the
largest proportion of covariance among sets X–Y. Additionally, canonical
loadings represent the relationship between an original variable and a
canonical variate (Fig. 1E bottom).

As the number of subjects was less than the number of variables in
both data sets, we included two regularization parameters for the
covariance matrices X and Y (λ1 and λ2). Optimal parameters were
estimated via leave-one-out cross-validation with recursive search on a
two-dimensional surface grid. We directly searched for the maximum
cross-validation value on the two-dimensional surface to obtain the
optimal values for λ1 and λ2. These values are used to regularize the X
and Y covariance matrices on the CCA model and solve the problem of p
≫ n and, to reduce overfitting due to the large number of variables. (see
e.g., Gonz�alez et al., 2008 and Supplementary Fig. 2B).

Statistical significance of each CCA model was evaluated through
permutation tests, randomly shuffling the rows of one of the input
matrices (Y in this case) followed by running a permutation-based CCA.
This built a null distribution of CCA results from which the associated p-
values of the overall fit could be derived. Specifically, overall significance
was determined by placing the original p-value into this distribution (see
code in the repository for further details). Confidence intervals for CCA
results were calculated using 10,000 bootstraps.

In addition to the main TLE-CCA model, we evaluated the following
models to test for specificity: one with morphological measures (i.e.,
volumetric of subcortical and cortical areas), one including only controls,
one controlling matrix X and Y for hippocampal volume and mean
cortical thickness, one controlling for age, duration of epilepsy and AED,
and a full model that included network parameters, clinical features and
volumes. The last two were performed to reveal clinical contributions
above and beyond the structural effects on cognitive profiles.

Several analyses were employed to test for robustness of findings with
respect to the nodal parcellation scheme on the CCA results. First, we
evaluated our approach when combining the alternative Schaefer par-
cellation with 200 cortical nodes (Schaefer et al., 2017) and volBrain’s
subcortical nodes. We furthermore ran the CCA after compressing our
network data based on a well-established functional community detec-
tion (Yeo et al., 2011, Supplementary Fig. 10). Finally, we applied
dimensionality reduction of the X matrix with PCA prior to CCA analysis
(Supplementary Fig. 11).
4

b) Stable cluster analysis for cognitive phenotypes. Clustering techniques
have been suggested to capture heterogeneity in different clinical co-
horts, and applied to cognitive variables in epileptic groups (Dabbs et al.,
2009; Hermann et al., 2007). We clustered our TLE patients based on
their cognitive scores to identify associations between cognition and
connectome measures and assessed connectome-level comparisons be-
tween the clustered classes and healthy controls. Robust cognitive phe-
notypes were identified via unsupervised and bootstrap-supported
analysis to identify maximally stable clusters (Fig. 2; Bellec et al., 2010).
For each of the 10000 bootstrap iterations, we ran the k-means clustering
algorithm with a set k ranging from 2 (minimum of 2 clusters) to 33 (N-1
clusters, N ¼ number of subjects). During this process, we aggregated a
stability matrix that collects the probability of each pair of subjects
belonging to the same cluster (Fig. 1C and D). Stable clusters could thus
be defined from this stability matrix, where clusters were formed by
grouping participants that had a high probability of being clustered
together irrespective of k.

c) Class difference analysis. Feature data, including hippocampal and
subcortical volumes as well as cortical thickness, were z-scored based on
controls and sorted into ipsilateral/contralateral relative to the seizure
focus (Bernhardt et al., 2016; Liu et al., 2016). Bilateral patients (n ¼ 4)
were not sorted.

Clinical variables were compared between classes using ANOVAs fol-
lowed by Tukey’s post-hoc correction for multiple comparisons.

Topological nodal parameter (k, C, L) in the TLE group (see above for
parameter sorting relative to the seizure focus) was compared to controls
for each Class and represented as effect size (Cohen’s D). For statistical
comparison a node-level (ROI) t-test was performed for each TLE class
compared to controls. Differences in nodal network parameters were
corrected for multiple comparisons at a two-tailed false discovery rate
(FDR) of q ¼ 0.025.

Cortical thickness and subcortical volumes were compared to controls,
and corrected with the mean cortical thickness for each subject. Surface-
based analysis leveraged SurfStat for Matlab (Worsley et al., 2009). Effect
size of the cortical thickness (Cohen’s D) between group differences was
calculated for each Class, and compared to controls at a vertex level using
t-tests, and corrected for multiple comparisons with FDR, q < 0.025.
Fig. 2. Unsupervised clustering.
A) Cognitive features as z-scores with respect
to controls are shown for each patient
(rows). B) Example of a bootstrap with re-
placements realization with Ward D2 hier-
archical agglomerative clustering. The
optimal number of clusters (k) was deter-
mined from k ¼ 2–33 C) Adjacency matrix of
the optimal partition for each bootstrap Sboot,
where Sbootij equals 1 if participants i and j
belong to the same partition and 0 otherwise.
D) After 10000 bootstraps, final stability
matrix Sij that represents the percentage of
times a subject i was classified similarly to
subject j. E) Hierarchical agglomerative
clustering is performed over the stability
matrix Sij, clustering converges on a three
subtype solution in our cohort.
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3. Results

3.1. Multivariate association analyses

Canonical correlation analysis revealed one significant mode relating
cognitive performance and structural connectome features in TLE (per-
mutation-test p < 0.05; Fig. 3). Associated patterns of loadings showed
that reduced cognitive scores related to reduced degree centrality and
clustering, along with increased path length. Network loadings encom-
passed measures from cortical and subcortical regions and were high in
both ipsilateral and contralateral regions. Specifically, longer path
lengths related to lower cognitive scores in TLE, indicating associations
between reduced global connectome efficiency and worse cognitive
performance. Similarly, reduced degree centrality in bilateral superior
frontal lobes, and precentral gyrus related to more marked cognitive
dysfunction. Finally, clustering coefficient in ipsilateral parietal and
middle frontal gyrus related to lower cognitive scores. When clinical and
volume features were added to the CCA, results were consistent with the
original model, adding negative loadings related years of study and
volume of both hippocampi with lower cognitive scores (Supplementary
Fig. 3).

Multivariate CCA between morphological measures and cognitive
characteristics did not yield any significant associations in patients
(Supplementary Fig. 4). Likewise, in our cohort no significant associa-
tions were found in healthy controls (Supplementary Fig. 5). Further-
more, the topological measures were independently associated with
cognitive performance when controlling for hippocampal atrophy and
cortical thickness (Supplementary Fig. 6). The first covariate describing
relations between cognitive performance and network parameters was
Fig. 3. Regularized canonical correlation solution.
A. Canonical correlations for each canonical variate, each with confidence interval an
of the canonical weights assigned to the cognitive scores against the network parame
speed score (PS) is shown as size of the circles, and color represents cognitive Clas
cognitive scores and network parameters. Loadings are obtained by correlating each
relation between each cognitive score and the first canonical variate. The lines repr
panel shows the cognitive scores and network loadings on the plane of the first and
degree, green for cluster coefficient and orange for characteristic path length. Cogn
VWM-visual working memory, IMI-immediate memory, DMI-delayed memory, VC
perceptual reasoning. C-Right panel shows the significant network loadings of th
measurement.
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highly similar when additionally controlling for duration of epilepsy, age,
and number of AED (Supplementary Fig. 7).

Degree centrality and clustering coefficient findings were consistent
when using a different parcellation for the definition of cortical nodes
(Supplementary Fig. 8). Although associations were slightly perturbed
when removing subcortical nodes, they were still measurable (Supple-
mentary Fig. 9). The first canonical variate of the Yeo communities
showed a similar topological distribution of loadings to our main model
(Supplementary Fig. 10). Taken together, these findings provide robust
evidence for a close coupling of cognitive performance and whole brain
white matter connectome topology in patients with temporal lobe epi-
lepsy, suggesting a network level pattern underlying broad variations in
cognitive function seen in these patients.

3.2. Cognitive classes

Bootstrap-based hierarchical clustering of cognitive profiles
converged on three cognitive classes in our TLE cohort (Figs. 2E and 4A).
Cognitive deficits showed an increasing gradient over the three classes,
yet the pattern of these deficits was specific for each. Patients in Class 1
had cognitive scores within normal range, those in Class 2 showed mild
impairment in memory-specific domains, and Class 3 displayed pro-
nounced impairment across all domains, with prominent reduction of
processing speed (Table 1). Notably, while there was heterogeneity
within each Class (particularly Class 1, with some patients scoring higher
than the average healthy control), the cognitive phenotypes that were
identified by bootstrap-based hierarchical clustering stability assess-
ments were very similar to those previously reported (Hermann et al.,
2007).
d significance (* and darker grey indicate statistical significance). B. Scatterplot
ter of the first canonical variate for each TLE patient (U1 versus V1). Processing
s. C. Canonical cross-loadings of the first and second canonical variates for the
of the variables directly with a canonical variate. C-Left panel shows the cor-

esent the confidence interval over the first canonical variate (x-axis). C-Middle
second canonical variates. Network loadings are shown with colors: Purple for
itive loadings are shown in cyan: AMI-Auditory memory, VMI-visual memory,
I-verbal comprehension, WMI-working memory, PS-processing speed and PR-
e first canonical variate, projected to the surface space and split by network



Fig. 4. Differences by cognitive class.
A. Cognitive scores for TLE patients by cognitive Class. Each patient is represented as a line indicating their normalized cognitive scores based on control, and the
mean of each Class represented as a thick line. B. Connectome measures. For each metric, effect size (Cohen’s D) of each Class compared to controls is projected over the
surface. Significant differences corrected for multiple comparisons are outlined in cyan; white outlines represent uncorrected p < 0.025. C. Morphological Measures.
Hippocampal volume is presented as z-score based on controls. Cortical thickness and subcortical volume are represented as Cohen’s D compared to controls.
Thickness is relative to the mean vertex value of each Class, while volume is the mean volume of each subcortical region.
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Class 1 patients presented with older age of epilepsy onset, more years
of education, and the shortest disease duration. Despite these clinical
differences, findings were similar when controlling for age, duration of
epilepsy, and number of antiepileptic drugs. Hippocampal sclerosis was
6

less prevalent in Class 1 (33%) than Class 3 (80%, Table 1). White matter
microstructure, as assessed with a tract-based spatial statistics frame-
work, showed minimal abnormalities in Class 1, with an increasing
amount of abnormal regions in Classes 2 and 3. Class 3 presents larger



Table 1
Clinical data by class. AED: number of antiepileptic drugs, HS, hippocampal
sclerosis. Age, education, onset, duration and AEDs, degree centrality, path
length, and cluster coefficient show as mean (standard deviation). *Significant
difference compared to controls (padjusted < 0.05). Superscripts indicate signifi-
cant difference with respect to the Class indicated by the number (padjusted <

0.05).

Clinical Class 1 Class 2 Class 3

Number 9 20 5
HS % presence 0.33* 0.45* 0.80*
Gender % female 0.56 0.75 0.40
Age years 28.7 (10.8) 30.9 (12.22) 26.4 (7)
Education years 14.3 (2.9) 12.4 (2.7) 8.4 (1.3)*1,2

Age at onset years 19.2 (12.2) 13.8 (7.3) 8 (7.1)
Duration years 9.4 (8.7) 17.1 (14.7) 18.4 (8.3)
AED 1.3 (0.5) 1.7 (0.7) 1.6 (0.6)
Global network parameters
Degree centrality 93.6 (3.6) 89.3 (5.6) 87.1 (4.3)
Path length x 10-4 31.2 (2.8) 31.3 (3.2) 38.6 (11.6)* 1,2

Cluster coefficient 0.72 (0.01) 0.71 (0.01) 0.71 (0.01)
Cognitive performance
Intelligence quotient 101.0 (13.7) 82.8 (7.6)*1 63.6 (14.7)*1,2

Verbal comprehension 100.7 (20.6) 84.4 (7.8)*1 64.6 (13.1)*1,2

Working memory 100.2 (11.6) 82.3 (9.4)*1 63.6 (8.8)*1,2

Perceptual reasoning 103.9 (8.9) 86.5 (8.7)*1 65.2 (7.8)*1,2

Processing speed 101.9 (10.4) 90.4 (10.3)*1 66.2 (9.6)*1,2

Auditory memory 97.1 (18.4) 78.2 (11.0)*1 49.2 (2.6)*1,2

Visual working memory 101.9 (7.7) 76.3 (13.5)*1 52.0 (7.3)*1,2

Immediate memory 99.1 (15.1) 75.5 (11.6)*1 44.6 (4.6)*1,2

Delayed memory 96.4 (16.6) 73.7 (12.7)*1 49.2 (3.3)*1,2

R. Rodríguez-Cruces et al. NeuroImage 213 (2020) 116706
anomalies in white matter diffusion of major fascicles such as the bilat-
eral anterior commissure, internal and external capsule, and a large
proportion of the corpus callosum (Supplementary Fig. 12).
3.3. Connectome-level and morphological compromise across cognitive
classes

Gradual network organization abnormalities were observed across
Classes with most marked changes in Class 3, intermediate differences in
Class 2, and only subtle changes in Class 1 (Fig. 4B). Although Class 1
presented with subtle increases of degree centrality and clustering co-
efficient relative to controls in cingulate and parietal cortices at uncor-
rected thresholds, these were not significant after correction for multiple
comparisons. Class 2 showed decreased clustering in the contralateral
suborbital sulcus and inferior frontal sulcus (pFDR<0.025). At a
connectome-wide level, Class 3 showed the most marked increases of
characteristic path length (pFDR<0.025), while Classes 1 and 2 were
rather normal. In Class 3, path length increases were most marked in the
lateral and medial temporal lobes in both hemispheres, the ipsilateral
frontal and the contralateral occipital lobe.

Similar network parameter findings, we observed an increasing
gradient of structural MRI changes from Class 1 (most similar to controls)
7

to Class 3 (most abnormal, Fig. 4C). Hippocampal volumes in Class 1
were within the control range, while Class 2 and 3 had and increasing
degrees of hippocampal atrophy. Cortical thinning was also most pro-
nounced in Class 3, particularly in parietal areas ipsilateral to the focus.

A final integrative analysis examined associations between the rCCA
and clustering solutions. This analysis revealed a tight relation between
the first canonical variate (U1) with our clustering solution for all
cognitive scores (Fig. 5). When we controlled our CCA model for hip-
pocampal volume ipsilateral to the lesion and mean cortical thickness,
the main canonical loadings were preserved, but the canonical weights
lost their hierarchical relation with the cognitive metrics.

4. Discussion

The current work targeted the complex interplay between structural
connectome reorganization and cognition in patients with drug-resistant
temporal lobe epilepsy (TLE). Harnessing two complementary multi-
variate data science methodologies (i.e., canonical correlation analysis
and data-driven clustering), we observed converging evidence for a close
associations between the overall degree of white matter network per-
turbations and multi-domain cognitive impairment in our patients. In
particular, we found less efficient network organizations in patients with
more marked cognitive difficulties. Notably, although complementary
cortical thickness analysis revealed marked morphological anomalies in
the same patient cohort, these measures were less closely associated to
cognitive dysfunction than white matter connectome metrics. Further-
more, no significant associations were observed in controls.

Core to our data acquisition was a multi-domain cognitive pheno-
typing together with a whole-brain neuroimaging and connectomics
paradigm. The use of a broad neuropsychological battery instead of
restricted psychometric testing was motivated by prior observations
suggesting that TLE impacts not only language and memory, but rather a
diverse set of cognitive domains also including attentional and executive
functioning (Dabbs et al., 2009; Hermann et al., 2007). Similarly, we
employed hippocampal volumetry, cortical thickness analyses, as well as
diffusion MRI connectomics to assess macroscale brain anomalies in both
grey and white matter compartments. Prior histopathological and
morphological studies have indeed suggested that although TLE is
generally associated to mesiotemporal anomalies (Blümcke et al., 2013),
it is rarely associated to a confined focal pathological substrate (Bern-
hardt et al., 2013; Blanc et al., 2011). Instead, an increasing number of
MRI-based cortical thickness assessments and subcortical shape analyses
have indicated a rather distributed structural compromise, often char-
acterized by bilateral temporo-limbic as well as fronto-central atrophy
(Bernhardt et al., 2010; Lin et al., 2007; Whelan et al., 2018). Similarly, a
growing body of white matter tractographic analyses and network
neuroscience work leveraging graph theoretical formalisms of structural
connectomes suggested atypical white matter organization and micro-
structure not limited to the temporal lobe, but in a rather widespread
topographic distribution radiating outwards from the mesiotemporal
Fig. 5. Cognitive convergence.
Both methods used converge over the
cognitive domain. The plot shows the rela-
tion between the first canonical variate and
cognitive scores. Plot of the relation between
the first canonical variate (U1) and all the
cognitive scores, colored by class. Y-axis
represents the value of the first canonical
variate of the rCCA-TLE model for each
subject, while on x axis we plot all the
cognitive scores as z-score based on controls.
Each subject’s cognitive profile is shown as a
horizontal line. The size of circles represents
the score for each cognitive test. Individual
cognitive tests are not distinguishable in this
plot.
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epicenter (Bonilha et al., 2013; Concha et al., 2005; Otte et al., 2012;
Riley et al., 2010). Although these distributed abnormalities have been
hypothesized to affect cognitive function (Lin et al., 2012), there are so
far only sporadic systematic attempts to relate imaging measures to
multi-domain cognitive phenotypes in TLE. In fact, among those studies
associating structural anomalies and cognitive performance in TLE (Diehl
et al., 2008; McDonald et al., 2014, 2008; Reyes et al., 2019; Riley et al.,
2010; Rodríguez-Cruces et al., 2018), the majority has been rather se-
lective, focusing on the relation between specific brain measures on the
one hand, and particular cognitive domains on the other hand.

We harnessed multivariate associative techniques as well as
bootstrap-based hierarchical clustering to integrate the broad panorama
of cognitive phenotypes in TLE with connectomics and structural neu-
roimaging measures. The former class of models (McIntosh and Mi�si�c,
2013), in our case a canonical correlation analysis (CCA), provides a set
of sparse components capturing complex covariation patterns between
network parameters and cognitive profiles. In healthy young adults, CCA
has been used to identify gradual associations between functional con-
nectome configurations and factors related to lifestyle, demographics and
psychometric function, describing a positive-negative mode of covaria-
tion between observable behavior and self-report measures and func-
tional connectome organization (Smith et al., 2015b). Similar methods
were also leveraged to relate multimodal patterns of MRI and
non-imaging measures using the UK Biobank database (Miller et al.,
2016; Kernbach et al., 2018). In our TLE cohort, CCA revealed a
consistent pattern of associations characterized by distributed increases
in connectome path length related to reduced cognitive performance.
Previous reports have shown similar increases of characteristic path
length in this condition compared to controls, suggesting overall reduced
global network efficiency (Bernhardt et al., 2011; Bonilha et al., 2012;
Raj et al., 2010; Vaessen et al., 2012). Further elements of the
brain-behavior covariation mode encompassed low frontal lobe clus-
tering coefficient together with reduced parietal hubness in patients with
reduced cognitive functions, potentially indicating a breakdown of
frontal and parietal network segregation that may ultimately reflect
network level consequences secondary to microstructural anomalies
previously reported in these systems, notably axonal damage, myelin
alteration, as well as reactive astrogliosis (Rodríguez-Cruces and Concha,
2015). As multivariate associative techniques like CCA can overfit, we
incorporated several additional elements to ensure specificity and
robustness. First, consistency was verified via cross-validation tech-
niques, reducing potential hyper-optimization of within-sample associ-
ations at the expense to out-of-sample generalization. Second, we
evaluated consistency of our CCA findings when using an alternative
cortical parcellation scheme and when using an established community
definition (Yeo et al., 2011), suggesting robustness of the observed
brain-behavior associations with respect to nodal definition. Notably,
including metrics of subcortical nodes revealed more extensive patterns
of network abnormalities, in line with the known relevance of subcortical
structures in capturing network-level pathology of TLE (Seidenberg et al.,
2008). Finally, associations were more marked at the level of white
matter connectomes than for grey matter morphometry, confirming
overall a close association between white matter connectome architec-
ture and cognitive phenotypes in the condition.

Further support for the consistency of the brain-behavior association
in our patients was provided by data-driven clustering of the cognitive
profiles, additionally supported in the current work using bootstrap
based stability maximization (Bellec et al., 2010). Subtyping of epileptic
patients based on cognitive profiles has previously been employed to
identify a spectrum of cognitive function (Dabbs et al., 2009; Hermann
et al., 2007; Reyes et al., 2019; Rodríguez-Cruces et al., 2018). The
applied method converged on a three-class solution with gradual
cognitive impairments and overall corresponding degrees of brain
anomalies, assuring that cognitive impairment in TLE is indeed related to
an increased load of white matter connectome reorganization, together
with hippocampal and cortical grey matter atrophy. Integrative analyses
8

confirmed that these discovered cognitive classes provide a different
viewpoint on the dimensional multivariate mode of covariation seen via
CCA (Fig. 5). Of note, the prevalence of hippocampal atrophy increased
across the three cognitive classes, with the class showing the most
marked cognitive dysfunction and connectome anomalies (i.e., Class 3)
also presenting the highest degree of hippocampal volume loss.
Conversely, TLE laterality was similarly distributed across classes,
potentially due to the broader range of domains evaluated in the current
study than in work focusing on language and/or memory, which gener-
ally support more marked impairment in left compared to right TLE
(Wieser and ILAE Commission on Neurosurgery of Epilepsy, 2004).

Several previous reports have related white matter abnormalities to
cognitive deficits in TLE, with most previous studies focusing on specific
white matter tracts and studying diffusion parameters derived from the
diffusion tensor model, such as FA and MD (Diehl et al., 2008; McDonald
et al., 2014, 2008; Riley et al., 2010; Rodríguez-Cruces et al., 2018; Reyes
et al., 2019). While most reports have focused on TLE, some have also
assessed other forms of epilepsy including genetic/idiopathic generalized
syndromes (Niso et al., 2015). Despite heterogeneity in prior findings,
the overall consensus of this work is that the overall degree of diffusion
tensor abnormalities in specific tracts (or group of tracts) relates to the
degree of cognitive decline seen in patients (Vaessen et al., 2012). Our
work builds on this prior knowledge, addresses some conceptual and
methodological issues, and provides a novel combination of several
advanced methods in the context of TLE. First, in light of the
widely-recognized shortcomings of the tensor model in quantifying
structural connectivity (Qi et al., 2015; Jones et al., 2013, Maier-Hein,
2017), we leveraged an advanced CSD model, which allows tracking
through areas of fiber crossing, which are pervasive throughout the
human brain (Jeurissen et al., 2013). Furthermore, in contrast to basing
our inference on the commonly used tensor derived metrics such as FA
and MD, we used graph-theoretical parameterizations, which provide an
integrative description of whole-brain network architecture and topol-
ogy. Finally, instead of individually testing brain-behavior associations in
preselected fiber bundles, we harnessed a multivariate statistical model
(CCA), which provides an integrative whole-brain perspective on the
association between cognitive burden and white matter damage. Prior
applications have shown utility of such multivariate associative tech-
niques in the context of healthy individuals (Smith et al., 2015b; Miller
et al., 2016; Kernbach et al., 2018) and in neuropsychiatric populations
(Kebets et al., 2019); here we provided a novel application of these
methods to the study of brain-behavior relationships in epileptic pop-
ulations. Notably, and in contrast to multiple prior studies, we evaluated
multiple methodological choices in our work, including the effect of
matrix thresholding, nodal definition, as well as associations to clinical
and morphological confounds.

Our structural network findings showing topological anomalies in
drug-resistant epilepsy results bear similarities with previous reports of
altered functional connectivity in TLE that indicate reduced global effi-
ciency in patients (Tracy and Doucet, 2015), and may partially resemble
findings at the level of structural covariance suggestive of increased path
length and clustering (Bernhardt et al., 2011, 2016; Yasuda et al., 2015;
van Diessen et al., 2013). Although structural and functional connectivity
cannot be equated, due to differential sensitivities of these techniques,
both give interrelated approximations of macroscale networks (Mi�si�c
et al., 2015; Honey et al., 2009), and may tap into similar network
mechanisms in disorders like TLE (Gleichgerrcht et al., 2015; Tavakol
et al., 2019). Indeed, mirroring findings at the level of structural con-
nectivity, prior functional connectivity analyses in TLE have suggested
effects of seizure focus laterality (Barron et al., 2015, Lariviere et al.,
2019, Morgan et al., 2015) and degrees of hippocampal pathology
(Bernhardt et al., 2019). These findings are complemented by functional
connectivity data based on intracranial recordings, suggesting associa-
tions between network properties and seizure evolution (Ponten et al.,
2007; Khambhati et al., 2016).

Several factors need to be considered when interpreting our findings.
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First, our sample size was modest and thus a potential limitation of the
generalizability of our multivariate associative findings. Yet, in both our
main and supporting analyses, we made several efforts to evaluate
robustness with respect to methodological choices and across participant
subsamples. Our approach furthermore resulted in the identification of
cognitive subtypes in agreement with prior cognitive and morphometric
studies (Hermann et al., 2007). Second, in light of known limitations of
diffusion MRI in approximating structural networks in vivo (Jones et al.,
2013; Qi et al., 2015, Maier-Hein, 2017), we adopted advanced methods
to build structural connectomes. Specifically, we leveraged probabilistic
tractography derived from constrained spherical deconvolution, instead
of diffusion tensor networks, to track fibers even in regions of fiber
crossing (Jeurissen et al., 2013). Moreover, prior work suggested high
reproducibility when constrained spherical deconvolution
derived-methods like SIFT with �1 M streamlines are used - algorithm
parameters also chosen in the current study (Roine et al., 2019).
Furthermore, although our study shows associations in patients that were
not seen in controls, we still cannot establish specificity given the lack of
disease controls in this work. Large-scale efforts such as enigma epilepsy,
for example, have already begun to assess epilepsy-related anomalies to
those in other disorders and it may be of relevance to also capitalize on
these resources for brain-cognition studies (Whelan et al., 2018; Hatton
et al., 2019). Finally, beyond these sample-specific and methodological
considerations, the cross-sectional nature of our work cannot provide any
insights into the causality between structural connectivity and cognition
in TLE. Longitudinal designs, ideally at different disease stages, are
required to disentangle the underlying directionality of effects (Caciagli,
2017; Bernhardt et al., 2010; Galovic et al., 2019).

In addition to the use of multivariate techniques and state-of-the-art
connectomics and cognitive phenotyping, our findings are well
anchored in overarching assumptions on the link between brain structure
and function in healthy and diseased brains. Our findings encourage the
use of multivariate methods and contribute to understand the complexity
of structural connectivity regulating the heterogeneous cognitive deficits
found in epilepsy.
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