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Accurate extraction of the cortical brain surface is critical for cortical thickness estimation and a key element to 

perform multimodal imaging analysis, where different metrics are integrated and compared in a common space. 

While brain surface extraction has become widespread practice in human studies, several challenges unique to 

neuroimaging of non-human primates (NHP) have hindered its adoption for the study of macaques. Although, 

some of these difficulties can be addressed at the acquisition stage, several common artifacts can be minimized 

through image preprocessing. Likewise, there are several image analysis pipelines for human MRIs, but very few 

automated methods for extraction of cortical surfaces have been reported for NHPs and none have been tested 

on data from diverse sources. We present PREEMACS, a pipeline that standardizes the preprocessing of structural 

MRI images (T1- and T2-weighted) and carries out an automatic surface extraction of the macaque brain. Building 

upon and extending pre-existing tools, the first module performs volume orientation, image cropping, intensity 

non-uniformity correction, and volume averaging, before skull-stripping through a convolutional neural network. 

The second module performs quality control using an adaptation of MRIqc method to extract objective quality 

metrics that are then used to determine the likelihood of accurate brain surface estimation. The third and final 

module estimates the white matter (wm) and pial surfaces from the T1-weighted volume (T1w) using an NHP 

customized version of FreeSurfer aided by the T2-weighted volumes (T2w). To evaluate the generalizability of 

PREEMACS, we tested the pipeline using 57 T1w/T2w NHP volumes acquired at 11 different sites from the 

PRIME-DE public dataset. Results showed an accurate and robust automatic brain surface extraction from images 

that passed the quality control segment of our pipeline. This work offers a robust, efficient and generalizable 

pipeline for the automatic standardization of MRI surface analysis on NHP. 
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. Introduction 

Research about brain structure and function in non-human primates

NHPs) is fundamental to understand both the neural substrate of hu-

an cognition and the sources of brain dysfunction in different neu-

ological populations ( Mendoza and Merchant, 2014 ; Merchant et al.,

015 ; Buffalo et al., 2019 ). Important recent progress on multimodal

nd multi-scale neuroimaging technologies in NHPs have opened a win-

ow to investigate many critical structural-functional properties of the

rain ( Milham et al., 2020 ); these include the study of structural brain

hanges during development, aging, and models of neurological disor-

ers ( Goldberg, 2019 ). 

With the objective of accelerating the research in NHP and promote

ollaboration, a recent worldwide initiative, the Primate Data Exchange

r PRIME-DE, has been created for data sharing and the development
∗ Corresponding authors. 

E-mail addresses: lconcha@unam.mx (L. Concha), hugomerchant@unam.mx (H. M

ttps://doi.org/10.1016/j.neuroimage.2020.117671 

eceived 1 July 2020; Received in revised form 4 December 2020; Accepted 16 Dece

vailable online 24 December 2020 

053-8119/© 2020 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
f open resources for NHP imaging ( Milham et al., 2018 , 2020 ). Never-

heless, a major obstacle for the community is the lack of fully validated

ipelines and automated methods for data preprocessing and surface ex-

raction of macaque MRI structural data. Consequently, in this paper we

escribe PREEMACS, a pipeline that standardizes the preprocessing of

aw structural MRI images (T1- and T2-weighted) for the extraction of

ortical surfaces in macaque NHPs with minimal or no manual interven-

ion. 

.1. Why study the cortical surface in NHP? 

For the last 20 years, the use of MRI surface-based methods has been

 crucial tool to study the human cortical structure. These methods in-

lude several cortical morphometric measures such as cortical thickness

CT), cortical surface area (SA), and gyrification ( Lerch et al. 2017 ). CT
erchant). 
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s a macroscopic parameter that provides relevant information about

trophy, as well as cortical plasticity ( Scholtens et al., 2015 ). The mor-

hology of the brain surface is regarded as an important endopheno-

ype in neurological and psychiatric disorders ( Davatzikos et al., 2011 ;

RC AIMS Consortium et al., 2019 ; Whelan et al., 2018 ). Neurodevel-

pmental studies have reported changes of CT and SA at different ages,

hich relate to age-specific neuronal pruning, myelin concentration,

nd cortical reorganization ( Zhou et al., 2013 ; Li et al., 2015 ; Shaw et al.,

008 ; Wierenga et al., 2014 ). In addition, measures like CT are sen-

itive to cortical changes in myelin and cytoarchitecture within days

nd weeks, enabling studies of task-related cortical plasticity ( Sampaio-

aptista and Johansen-Berg, 2017 ). Thus, the quantitative assessment of

hanges of cortical morphometry using MRI surface-based methods is a

owerful non-invasive technique to investigate brain structure in many

reas of neuroscience research. Notably, using MRI in NHPs as a model

or brain plasticity, development and neurological diseases provides es-

ential benefits over human MRI datasets ( Van Essen and Dierker, 2007 ).

irst, scanning NHPs under highly controlled anesthesia protocols per-

its acquisition of virtually motion-free images with high quality and

esolution, with the added benefit of longer scan times than those fea-

ible in human subjects ( Milham et al., 2020 ). Second, while recruiting

nd following a homogeneous group of subjects to track individual MRI

hanges over time remains a large problem in human studies, NHP stud-

es allow for great control in longitudinal studies and are better suited

o isolate the effects of experimental interventions ( Scott et al., 2016 ;

ong et al., this issue) and the reconfiguration of the cortical sheet af-

er intensive training in complex cognitive tasks ( Fortes et al., 2004 ;

rowe et al., 2014 ; Merchant and Averbeck, 2017 ). Finally, NHP struc-

ural MRIs can be combined with invasive experimental conditions that

re impossible to implement in human studies, such as pharmacological

nterventions ( Yc et al., 2019 ), histological studies ( Sultan et al., 2010 ;

aselaris et al., 2005 ; Georgopoulos et al., 2007 ; Caminiti et al., 2009 ),

nd high density electrophysiological recordings ( Schwartz et al., 2014 ;

endoza et al., 2016 ), as well as the injection of viral vectors for optoge-

etic manipulations ( Galvan et al., 2017 ) or Calcium imaging ( Li et al.,

017 ), which provides a unique way to understand the human brain and

ts pathologies. Therefore, the use of these combined methodologies can

hed light on fundamental information about the molecular, structural

nd brain circuit mechanisms behind changes in cortical thickness as-

ociated with development, learning, and neurological and psychiatric

isorders ( Buffalo et al., 2019 ). 

Despite their aforementioned advantages, surface-based methods

ave been scantly used in NHPs and confront the following technical

ssues: 1) the inability of specialized software to natively support sub-

illimetric resolution NHP brain volumes, 2) lack of precise brain ex-

raction algorithms adapted specifically for macaques, 3) the hetero-

eneity of MRI acquisition methods, and 4) a lack of consensus on image

reprocessing ( Gronenschild et al., 2012 ). PREEMACS provides a unified

nalytical framework that solves these issues and generalizes across dif-

erent image acquisition schemes and research institutions around the

orld. 

.2. The value of accurate cortical surface estimations 

Determination of the pial (outer) and white matter (inner, i.e., the

oundary between the cortex and underlying white matter) surfaces is

entral to accurate CT estimation. Errors in the estimations of these sur-

aces produce artificially higher or lower CT that potentially affect the

esults ( Ducharme et al., 2016 ; Rosen et al., 2018 ). Partial volume ef-

ects (PVE) due to MRI resolution is a common problem in MRI that

an blur the boundaries of gyri and sulci difficulting their identifica-

ion ( Rueda et al., 2010 ). For this reason, correct data acquisition, data

reprocessing and quality control are of the highest priority. Proper seg-

entation of gray and white matter, as well as CSF, are critical for sur-

aces reconstruction ( Eggert et al., 2012 ). Moreover, multiple algorithms

xist that calculate and determine the outer- and inner-surface bound-
2 
ries, such as: “Marching Cubes ”, a bottom-up method using edge de-

ection used in CIVET ( Kim et al., 2005 ), SureFit in Caret ( Zhong et al.,

010 ), volumetric-based method in ANTs ( Tustison et al., 2014 ), and

ayesian approaches ( Miller et al., 2000 ). All algorithms and methods

re prone to errors and inaccuracies that need to be addressed and min-

mized when conducting surface estimations ( Zhong et al., 2010 ). No-

ably, these methods have mostly been optimized for human brain imag-

ng and they application to NHPs has been proved challenging. Indeed,

his situation has led to each research group developing site-specific

daptations of existing tools, with poor generalization, or developing

ew methods from the ground up ( Oguz et al., 2015 ). 

.3. The importance of quality control in NHP MRI 

Results from image processing pipeline can only be as good as the

aw data will allow. Quality assurance is, therefore, an obligatory first

tep. Semi-automated quality control (QC) has gained traction due to the

ver-increasing generation of large amounts of imaging data (big data)

n MRI, with datasets prohibitively large to curate manually ( Alfaro-

lmagro et al., 2018 ; Klapwijk et al., 2019 ). Recent efforts in QC for big

ata analysis demonstrate that curation is a necessity to reduce vari-

bility and increase statistical power in morphological data ( MRC AIMS

onsortium et al., 2019 ). Automated extraction of QC metrics and their

ntuitive visualization has been adopted by recent software such as

RIqc ( Esteban et al., 2017 ), which provides an easy to use HTML-based

nterface to quickly curate human neuroimaging data. The importance

f QC is accentuated with NHP MRI data where there is increased vari-

bility due to the type of image sequences used, as well as their orienta-

ion, geometry, and other parameters ( Milham et al., 2018 ). The present

ipeline relies on different MRIqc-based metrics to determine whether

he input NHP images are of enough quality to produce adequate esti-

ates of brain surfaces and CT measurements. 

Here, we aimed at developing a robust, automatic and versatile pre-

rocessing pipeline for macaque cortical surface estimation. Our work-

ow deals with many specific challenges of the NHP structural images

nd was validated on 57 images from 11 different sites from the PRIME-

E. Specifically, PREEMACS carries out automatic skull striping, per-

orms a quality control assessment on input images that predicts the

uality of the surface outcome, uses three custom made macaque tem-

lates for surface segmentation and registration within the pipeline,

eeps all images and the resulting surfaces in native space, and runs

ll the steps automatically within the workflow until the CT group data

nalysis. 

. Material and methods 

.1. UNAM-INB dataset 

.1.1. Subjects 

Eight rhesus monkeys ( Macaca mulatta , six males, 4–10 years old,

eight 5–12 kg) were scanned under anesthesia. Animal care, hous-

ng, and experimental procedures were approved by the National Au-

onomous University of Mexico Institutional Animal Care and Use Com-

ittee (protocol 090.A INB) following the principles outlined in the

uide for Care and Use of Laboratory Animals (NIH, publication number

5–23, revised 1985). 

.1.2. Data acquisition 

Anesthesia 

Anesthesia was induced with an initial dose of ketamine/xylazine

IM 7/0.6 mg per Kg) and maintained with additional doses of ke-

amine/xylazine (IM 2.5/0.05 mg per Kg) every 30 min. Animals were

onitored continuously with a pulse oximeter to track heart rate and

eripheral capillary oxygen saturation. 
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Imaging protocol 

Images were acquired using a 3 T Philips Achieva TX scanner with

 32-channel head coil for humans. Animals were placed inside the

canner in an inverted sphinx position, which minimizes the distance

etween the animal’s head and the coil and improves signal-to-noise

atio (SNR). A vitamin E capsule affixed to the right portion of the

ead to unequivocally ascertain left/right hemispheres throughout sub-

equent image processing steps. In order to ensure the same posi-

ion of all animals in the scanner, based on https://caseforge.co mod-

ls, we used a custom-made plastic helmet specifically designed for

he 32-channel head coil with removable tailor-made padding adapted

o each monkey’s head. These precautions minimized motion and

voided direct contact of the monkey’s head with the coil. T1w vol-

mes were acquired using a spoiled gradient echo sequence using three-

imensional spatial encoding, with slices collected in the sagittal plane

frequency encoding = anterior/posterior), with imaging parameters

s follows: TR/TE = 3.1/5.24 ms, flip angle = 8°, SENSE, field of view

FOV) = 128 × 128 × 145 mm 

3 , matrix size = 184 × 143 × 183 slices,

ielding voxel resolution = 0.7 × 0.5 × 0.5 mm 

3 . We obtained 6 T1w

mages per animal. Four T2w volumes in the sagittal plane (frequency

ncoding = anterior/posterior) were acquired using a turbo spin echo

equence with three-dimensional spatial encoding, with an isometric

oxel resolution of 0.5 mm, matrix size = 256 × 256 × 290 slices, SENSE,

R/TE = 2500/338 ms, flip angle = 90°, FOV = 256 × 256 × 100 mm 

3 . The

anufacturer’s default surface coil intensity (SCIC) filter was applied to

ll images prior to further processing. 

.2. PREEMACS modules 

PREEMACS has a modular design, with each module running in-

ependently. These modules perform the canonical workflow for pre-

rocessing MRI ( Glasser et al., 2013 ; Alfaro-Almagro et al., 2018 ;

steban, et al., 2019 ), except for the steps that are specific for NHP

ata using different previously-available functions from FSL (FM-

IB’s Software Library – FSL, Oxford, U.K) ( Smith et al., 2004 ),

NTs ( Avants et al., 2011 ), MRtrix ( Tournier et al., 2019 ), MRIqc

 Esteban et al., 2017 ) and FreeSurfer ( Dale et al., 1999 ; Fischl et al.,

999b ; Fischl, 2012 ). Inputs to the pipeline are one (or more) T1w vol-

mes and one (or more) T2w volumes per animal ( Fig. 1 A). 

.2.1. Module 1: preprocessing 

This module prepares the raw images (T1w and T2w) for initial pro-

essing and is constituted by the following six steps ( Fig. 1 B): 

Volume orientation: Since brain images of the NHP can be acquired

ith the subjects in different positions (e.g. lateral, sphinx, supine)

ithin the scanner, it is necessary to reorient the image. This step gen-

rates an output volume in RAS space relative to the sphinx position

Right- > left; Anterior- > posterior; Superior- > inferior). 

Image crop. The FOV of NHP MRI acquisition often includes anatomy

eyond the head of the animal. This extra information can increase

etween-subject variance and make spatial normalization difficult.

herefore, PREEMACS crops the brain and parts of the skull automat-

cally in native space. This crop is performed using a mask whose ge-

metry depends on the coordinates of the anterior and posterior com-

issures. These coordinates are estimated by aligning the T1w volume

o the NMT template ( Seidlitz et al., 2018 ) through a linear registration

ith 6 degrees of freedom (DOF) using ANTs ( Avants et al., 2011 ), then

ack to native space. If registration fails, then PREEMACS asks the user

o provide the coordinates of anterior and posterior commissures to crop

he images. 

Intensity non-uniformity (INU) correction: Most NHP images contain

patially varying intensity non-uniformities. Common sources of non-

niformities include the use of multi-channel coils, the position of the

nimal with respect to the coil, and B1 inhomogeneities. Image segmen-

ation, in turn, is likely to fail unless these non-uniformities are properly

orrected. Intensity normalization is performed with the N4 algorithm
3 
 Tustison et al., 2010 ) on every volume, prior to averaging. For improv-

ng the performance of the N4 algorithm the b-spline fitting parameter

as tuned empirically (-b [100 mm]). 

Image averaging, resampling and conform: The T1w and T2w volumes

re averaged separately for each contrast. This is performed using the

ool mri_motion_correct.fsl of FreeSurfer. Each of the two resulting vol-

mes are resampled to obtain an isometric resolution of 0.5 mm and a

nal size of 256 × 256 × 256 voxels. 

Skull-stripping: Obtaining an accurate mask of the brain is a cru-

ial step for image processing. While there are many tools for skull-

tripping in human MRI ( Kleesiek et al., 2016 ; ( Eskildsen et al.,

012 ; Iglesias et al., 2011 ; Smith, 2002 ), we encounter far fewer

ools for NHP, including: Marker based watershed scalper (MBWSS)

 Beare et al., 2013 ), 3dSkullStrip of AFNI ( Cox, 1996 ), Primatologist-

oolbox ( Balbastre et al., 2017 ), NMT_subject_align.sh ( Seidlitz et al.,

018 ), and automated template derived brain extraction in animal MRI

atlasBREX) ( Lohmeier et al., 2019 ). Nevertheless, the brain segmen-

ation obtained using these tools, in most cases, shows estimation er-

ors in the prefrontal cortex and the temporal lobes, as well as errors

n the separation of the dura and gray matter. To solve this problem,

e customized the Python module DeepBrain ( Itzcovich, 2017 ), which

as designed for skull-stripping in human MRI using a convolutional

eural network implemented on Tensorflow, to work with NHP data.

e trained the DeepBrain model using a set of T1w monkey images and

he corresponding manually-defined brain masks. Notably, the data aug-

entation strategy implemented in DeepBrain increases the variability

f image orientation in order to obtain a richer input dataset. We refer

o this skull striping method based on the convolutional neural network

odel as the PREEMACS brainmask tool. The preprocessing of the im-

ges for training the convolutional neural network was the following:

irst, we executed the first module of PREEMACS through step “Image

veraging, resampling and conform ” using a total of 126 images: 88 im-

ges from PRIME-DE (sampling at least an image per PRIME-DE site

rom 17 sites), 17 from UNAM-INB, and 21 from UNC-Wisconsin dataset

 Young et al., 2017 ). Second, we built a brain mask for each image as

ollows. For the PRIME-DE and UNAM-INB datasets, we built the brain

asks using the atlasBREX pipeline and performed the corresponding

anual correction. The masks included all cerebral and cerebellar gray

atter and white matter, as well as the brainstem (pons, medulla). Skull,

kin, muscles, fat, eyes, dura mater, bone and the optic chiasm were ex-

luded from the mask. In the case of the UNC-Wisconsin dataset, manual

egmentation of the images was already available, so we only excluded

he optic chiasm from the original masks. 

The degree of overlap between the mask computed with the PRE-

MACS brainmask tool and the manually drawn reference mask was

etermined using three metrics: Dice coefficient ( Dice, 1945 ), Sensitiv-

ty and Specificity ( Kleesiek et al., 2016 ). These measures depend on the

ollowing four parameters: false negatives (FNs) defined as voxels that

re removed by the Deep Neural Network method but are present in

he reference mask; false positives (FPs), defined as voxels which have

een predicted incorrectly as brain tissue; true positives (TP), that cor-

espond to the voxels that were correctly identified by the PREEMACS

rainmask tool as brain tissue; and true negatives (TN), defined as the

oxels correctly identified as non-brain tissue. Dice is the most com-

only used coefficient to compare two segmentations ( Kleesiek et al.,

016 ; Manjon et al., 2014 ; Wang et al., 2014 ) and is defined as the ratio

f twice the size of the intersection of the two masks relative to the sum

f their sizes, as follows: 

ice = 

2TP 
2TP + FP + FN 

Based on Kleesiek et al. (2016) , we also computed the sensitivity

TP/(TP + FN)) and specificity (TN/(TN + FP)) scores. 

.2.2. Module 2: quality control 

Since images with acquisition artifacts could induce biases and seg-

entation miscalculations, a rigorous quality control of the input im-

https://caseforge.co
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Fig. 1. Pipeline for PREprocessing and Extraction of the MACaque brain Surface (PREEMACS). A. Input raw images. B. Module 1 performs volume orientation, 

image cropping, INU correction, image average, and skull-stripping. C. Module 2 performs quality control using an adaptation of the MRIqc method and extracts 

quantitative quality metrics, which are used to determine the likelihood of a successful brain extraction based on a SVM classifier. D. Module 3 estimates the white 

matter (WM) and pial surfaces from T1w using an NHP customized version of FreeSurfer 6.0. After a second INU correction, a volumetric label estimation is carried 

out based on our PREEMACS FreeSurfer segmentation atlas. Then, WM segmentation is performed and the WM surface is registered to the PREEMACS Rhesus 

parameterization template. The pial surface is properly estimated with the help of the T2w image. Finally, CT is calculated and the resulting surfaces can be analyzed 

in the geometric space of PREEMACS Rhesus average surface. 
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i  
ges is of utmost importance for the automatic identification of cor-

ical surfaces. Here, we adapted the structural MRI Quality Control

ool MRIqc v0.15.2 ( Esteban et al., 2017 ) to work with NHPs. Specif-

cally, we performed the following adaptations to MRIqc for monkey

mages: conform, skull-stripping, spatial normalization to the NMT mon-

ey template ( Seidlitz et al., 2018 ) space with a high-resolution template

0.25 × 0.25 × 0.25 mm 

3 ), and replacement of all human template im-

ges (brain template, brain mask, head mask and probabilistic segmen-

ation files) with the NMT template. As a result of these modifications,

he MRIqc pipeline is fully compatible with NHP images. MRIqc car-

ies out the brain segmentation and estimates the brain masks to finally

ompute the image quality metrics (IQMs). From the total 68 metrics cal-

ulated by MRIqc, we used 58 for further analysis. The other ten metrics

ere excluded because they related to voxel and FOV sizes, which are

onstant across the resampled images, measure background artifacts of

arts of the images that PREEMACS crops or could not be reliably com-

uted across images. In addition, six structural datasets were not in-

luded since their signal-to-noise ratio was very low and did not allow

or the computation of IQMs. 

PREEMACS uses these IQMs as predictors of the quality of the re-

ulting surface using a Support Vector Machine (SVM), where the three

ossible outcomes of the classifier are surfaces with minimum, medium

r large errors ( Fig. 1 C). The SVM was trained one hundred times with

 twenty-fold cross-validation to evaluate the performance of the classi-

er. The training dataset of the SVM were the 58 IQMs of 57 T1 images

52 MRIs from PRIME-DE and 5 MRIs from UNAM-INB) and for which

he target class (minimum, medium or large errors) was defined using a

isual inspection test on the wm/gm PREEMACS surfaces. This test uses

 rating scale between 0 and 48 points depending on the smoothness of

he surfaces and presence of segmentation errors. The smoothness takes

alues between 0 for perfectly smooth and 10 for very irregular surfaces.
4 
he segmentation rating can acquire values between 0 for no errors and

8 for widespread errors in the wm across all cortical areas. The values

f the visual inspection test were ranked as minimal for 0–9, medium

or 10–15, and larger errors for 16–48. Surfaces with large errors on the

isual inspection test would require major manual intervention. 

We investigated whether some metrics contained more information

o predict the quality of the obtained surfaces. To this end, we computed

 dissimilarity matrix for all possible metrics pairs using the Calinski–

arabasz index as a distance measure ( Calinski and Harabasz, 1974 ).

his index measures the clustering power of a metric pair to separate

he three outcome surfaces and corresponds to the ratio of the intra- to

he inter-cluster dispersion with larger scores for better clustering. This

atrix was treated as the adjacency matrix for a weighted undirected

raph. The threshold was found through an edge density minimization

pproach, whereby the graph density ( K ), defined as K = n / ( N × ( N − 1)),

here n is the number of edges in the graph and N the total number of

etrics, was iteratively calculated for an increasing threshold, starting

t zero and reaching the maximum Calinski–Harabasz index in the ma-

rix, progressively eliminating edges that did not reach each threshold

nd nodes that lost all its edges. 

Therefore, the threshold to extract the final graph is the index that

inimized the edge density, because at this point the graph conveys the

aximal information about its complex topology ( Royer et al., 2008 ).

s depicted in Fig. 3 A, the threshold had a Calinski–Harabasz index of

4.7 and the edge density at the threshold was 0.08. 

.2.3. Module 3: brain surface estimation 

The purpose of this module is to obtain the CT of the brain sur-

ace using a customized version of FreeSurfer v6 optimized for NHP

mages ( Fig. 1 D). This module uses the skull-stripped images obtained
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Table 1 

Adaptations of FreeSurfer recon-all pipeline. 

FreeSurfer Flag Step Status 

autorecon1 Motion correction and conform FreeSurfer v.6 

Non-uniform intensity 

normalization 

FreeSurfer v.6 

Talairach transform conformation PREEMACS customized 

Intensity normalization I FreeSurfer v.6 

Skull stripping replaced by PREEMACS 

brain mask tool 

autorecon2 Linear volumetric registration to 

Gaussian Classifier Atlas (GCA) 

FreeSurfer v.6 

Intensity Normalization based on 

GCA model 

FreeSurfer v.6 

Non-linear volumetric registration 

to GCA atlas 

FreeSurfer v.6 

Remove neck Deleted 

Align volume with skull to GCA 

atlas 

FreeSurfer v.6 

Volumetric labeling estimation PREEMACS customized 

Intensity normalization 2 PREEMACS customized 

WM segmentation PREEMACS customized 

Edit WM with volumetric labeling PREEMACS customized 

Fill FreeSurfer v.6 

Tessellation FreeSurfer v.6 

Smooth 1 FreeSurfer v.6 

Inflate 1 FreeSurfer v.6 

Qsphere FreeSurfer v.6 

Automatic topology fixer FreeSurfer v.6 

autorecon3 Final surfaces PREEMACS customized 

Smooth 2 FreeSurfer v.6 

Inflate 2 FreeSurfer v.6 

Spherical mapping PREEMACS customized 

Spherical registration PREEMACS customized 

Spherical registration, 

contralateral hemisphere 

PREEMACS customized 

Cortical ribbon mask FreeSurfer v.6 
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rom Module 1. Output surfaces are provided in Freesurfer and GIFTI

ormats. 

Second INU correction: Certain averaged volumes can have per-

isting image intensity non-uniformities (INU). PREEMACS uses the

iasFieldCorrection_sqrtT1wXT1w.sh pipeline from HCP to address

his issue ( Glasser et al., 2013 ) based on procedures described in

illing et al. (2012) . Briefly, the T2w image is aligned to the T1w im-

ge with a 6 DOF rigid-body transformation using ANTs tool, then the

ias field is estimated and corrected for based on the square root of

1w × T2w. 

Voxel image size: Most of Freesurfer’s tools expect images to be con-

ormed to an isometric resolution of 1 mm per side, and to have a specific

OV of 256 voxels per side. Given that NHP volumes typically have sub-

illimeter resolution not accepted by most software, the image header

s edited to fake isometric resolution of 1 mm (yet the image data is not

esampled) ( Donahue et al., 2016 ). 

FreeSurfer processing: FreeSurfer is a suite of tools for the analysis

f neuroimaging data using automated workflows to quantify structural

roperties of the human brain based on surface measures ( Fischl, 2012 ).

reesurfer’s main pipeline for human brain surface extraction is called

econ-all, which is in turn divided into three parts denominated autore-

on 1, 2, and 3. Specific adaptations of recon-all have been made in

REEMACS to work with NHP images, which are outlined in Table 1 . 

Modifications in Autorecon 1. For this part of the pipeline we devel-

ped two adaptations. Firstly, multiple steps of the FreeSurfer work-

ow required the use of talairach coordinates as seed points. To obtain

hese coordinates, FreeSurfer performs an affine registration ( Dale et al.,

999 ) to the MNI305 atlas, using 4dfp image registration tools dis-

ributed as a part FreeSurfer, and keeps the transformation matrix as

n .xfm file. Our pipeline uses a Rhesus template image in MNI space

namely the NMT template) instead of freesurfer’s default MNI305 tem-
5 
late. The second adaptation is the use of our skull-stripping procedure

ased on a convolutional neural network, as described previously (Sec-

ion “Skull-stripping ”). 

Modifications in Autorecon2 

Volumetric label estimation. To improve the wm/gm segmentation, it

s necessary to perform brain structural parcellation based on an atlas.

or each subject, FreeSurfer obtains the cortical and subcortical struc-

ure labels by non-linear registration using the Gaussian Classifier Atlas

GCA) ( Fischl et al., 2002 ). This human-based parcellation is used in dif-

erent steps throughout Freesurfer’s workflow such as wm segmentation,

egmentation of the cerebellum and pons among others. We replaced the

CA with a custom NHP segmentation (PREEMACS FreeSurfer segmen-

ation atlas, see below for details). Label estimation for each subject is

btained by registering the generic NMT atlas, a space where the PRE-

MACS FreeSurfer segmentation atlas was designed, to the correspond-

ng T1w using a non-linear transformation (diffeomorphic) registration

sing ANTs ( Avants et al., 2012 ). 

White matter segmentation. Two adaptations were developed in PRE-

MACS to obtain a robust wm segmentation. First, the wm was seg-

ented using a wm mask ( Dale et al., 1999 ). This wm mask includes

mpty spaces on subcortical gm in the human FreeSurfer workflow.

hese spaces are filled using a subcortical mask. To solve this issue

n NHP, the subcortical structures are identified using our PREEMACS

reeSurfer segmentation atlas. Then, the identified areas are filled as

m in the mask. 

Second, we customized the FreeSurfer pipeline to minimize a com-

on segmentation error in NHP MRIs consisting of a strong intensity

ias with high intensity values in the precentral gyrus and the visual

ortex. The problem was solved using the High Intensity Control Point

HICPO) tool, developed and implemented in our workflow. The HICPO

stimates the WM in the precentral gyrus (PCg) and in the visual cortex

sing a higher (stricter) volume segmentation threshold and a normal

hreshold over the rest of the cortex. We follow the standard FreeSurfer

rocess for the wm segmentation using the mri_segment tool for both

hresholds. Then, we created a mask on the high thresholded areas and

sed it to replace the precentral gyrus and the visual cortex on the brain

olume with low threshold segmentation. 

Modifications in Autorecon3 

Surface atlas registration. Since the number of vertices is not the same

mong the subjects and depends on the brain size of each monkey, the

m surface in native space needs to be registered to a common space

 Fischl et al., 1999a , 1999b ). This step computes a subject’s sphere from

he wm inflated surface, warps the sphere into a 2-D file containing the

urvature and convexity pattern of the subject, and then registers the 2D

le with a reference pattern called PREEMACS Rhesus parameterization

emplate (detailed below). This is executed to ensure that the monkey´s

urvature and convexity pattern are aligned with a generic Rhesus NHP

eference template. Thus, these metrics allow us to establish a surface-

ased coordinate system ( Fischl et al., 1999a ) with vertex correspon-

ence between subjects, such that anatomical features can be compared

etween animals for group analysis. For registration, FreeSurfer uses

ris_register, which represents deformation by a displacement field on

he sphere. This algorithm minimizes areal distortions, so that the over-

ll change in area of triangular mesh faces during the transformation is

inimized ( Fischl et al., 1999a ). After that, the pial surface is created by

xpanding the white matter surface so that it closely follows the gray-

SF intensity gradient, keeping the same topology (number of vertices,

dges, faces). During inflation, indexed vertices in each surface space

etain one-to-one correspondence, such that each index represents the

ame cortical location across white, pial, inflated and spherical surfaces.

ue to the surfaces are not matched across hemispheres within individ-

als, the data associated with each vertex are sampled into the group

pace in order to obtain vertex correspondence across subjects. 

Pial surface and cortical thickness estimation. Final estimation of the

ial surface is estimated using T2w images. In order to improve pial es-

imation we carried out three modifications on the FreeSurfer pipeline
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Table 2 

Number of images used across the different modules for the development and 

validation of PREEMACS. 

Process Number 

of subjects 

Database 

Assessment of the 

generalizability of 

PREEMACS pipeline 

52 PRIME-DE 

PREEMACS Rhesus average 

surfaces 

33 PRIME-DE and UNAM-INB 

PREEMACS brainmask tool 126 PRIME-DE, UNAM-INB, 

UNC- WISCONSIN 

MRIqc classifier model 57 PRIME-DE, UNAM-INB 

PREEMACS pipeline 

development 

5 UNAM-INB 
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Supplementary Figs. 1 and 2) ( Fischl et al., 1999a ). The first modi-

cation corrects the commonly observed intersection in pial surfaces

etween hemispheres. We initially estimate the difference between the

ortical ribbon from T1w and T2w images. Then, the correction is car-

ied out by subtracting this ribbon difference from the T2w images, fo-

using on an ROI that is made of two sagittal slices of the intermediate

all. Second, to avoid segmentation errors from the hippocampus and

mygdala, we used our atlas to identify and eliminate these structures

rom the final images. Finally, PREEMACS estimates the cortical thick-

ess modifying the maximum cortical thickness parameter (from the

efault 5 mm to 10 mm) to ensure that the fake 1 mm space (see Voxel

mage size ) does not set a low cap on cortical thickness ( Donahue et al.,

018 ). 

Template building: Three NHPs templates were built within the

reeSurfer environment: (1) PREEMACS FreeSurfer segmentation atlas,

ith cortical and subcortical labels, (2) PREEMACS Rhesus parame-

erization template, that includes the Rhesus curvature and sulcal pat-

ern templates for individual monkey wm surface registration, (3) PRE-

MACS Rhesus average surface for final mapping of vertices across all

nimals. The last two templates were constructed using 33 monkey MRIs

rom the (29 MRIs) PRIME-DE and (4 MRIs) UNAM-INB datasets. 

PREEMACS FreeSurfer segmentation atlas: We created an atlas with

reeSurfer format labels in NMT space. This atlas was built using the D99

emplate segmentation and registered to the NMT space, using a non-

igid transformation (diffeomorphic) using ANTs ( Avants et al., 2012 ).

he segmentation was corrected manually, and hippocampus, thalamus,

laustrum, ventral diencephalon, brainstem, and corpus callosum were

anually added. 

PREEMACS Rhesus parameterization template: First, each T1 im-

ge was linearly registered (6 dof) to the NMT space. Second, with

hese registered images we executed the PREEMACS workflow until

he sphere creation step, where we obtained the wm sphere surface

rom both hemispheres. Next, we created a parameterization file (PRE-

MACS Rhesus parameterization file) following the steps described

n the FreeSurfer wiki http://surfer.nmr.mgh.harvard.edu/fswiki/

urfaceRegAndTemplates creating a registration template across all ani-

als ( Fischl et al., 1999b ). A FreeSurfer workflow was designed to build,

or each hemisphere, a parameterization template file in 2D TIFF for-

at. This parameterization file contains nine elements with information

bout the mean and variance (across subjects) of the curvature pattern

estimated from both the smooth and inflated wm surface), the mean

nd variance of the convexity pattern (using the smooth wm surface),

nd the degrees of freedom (number of subjects) used for the statis-

ic calculation of the three patterns. The variance is used to lower the

eights of features with high fluctuations across subjects, so that the

egistration depends on the stable features like the curvature and con-

exity patterns of the central/calcarine/sylvian sulci in the inflated sur-

ace. The parameterization template file was built by adding subjects

teratively, initializing the process with the information of the NMT wm

urface to avoid biasing the estimation. 

PREEMACS Rhesus average surface: In order to obtain a template for

he geometric representation of the wm and pial surfaces, we created

n average surfaces using the steps described in the FreeSurfer wiki

ttp://surfer.nmr.mgh.harvard.edu/fswiki/SurfaceRegAndTemplates . 

he vertex correspondence across subjects is computed only for group

nalysis, so the subjects´ overlays (e.g. thickness) are sampled into the

roup space (not the surface geometries themselves). 

. Results 

To evaluate the generalizability of our method, we tested the PRE-

MACS workflow with the PRIME-DE ( Milham et al., 2018 ) data set. The

RIME-DE is an open source dataset with 217 NHP subjects from twenty-

even different sites. This database contains T1w, T2w, fMRI and DWI

cans. These images were acquired with different scanners, coils, struc-

ural MRI protocols and macaque species ( Macaca mulatta and Macaca
6 
ascicularis ). Consequently, we only selected images that met the follow-

ng criteria: MRIs with both T1w and T2w sequences, available to down-

oad online (without special requirements), no cropping or masks, and

nly one set of images per animal. In addition, phase-sensitive inversion

ecovery (e.g. Real-IR) images were eliminated as FreeSurfer produces

rrors in the tissue classification step. Fifty-eight images from PRIME-DE

lus five images from our UNAM-INB database met these requirements.

evertheless, we excluded six subjects due to their low signal-to-noise

atio. Thus, a total of fifty-seven monkey images from eleven sites across

he world were used to evaluate all modules of PREEMACS. See Table 2

or a detailed description of the number of images used across the dif-

erent modules of PREEMACS. 

.1. PREEMACS brainmask tool 

We developed a skull stripping method based on a deep learning

lgorithm that obtains accurate brain masks solving one of the most

ommon bottlenecks in surface-based estimations. Fig. 2 A shows values

f Dice, Sensitivity and Specificity for 126 masks obtained with PRE-

MACS brainmask tool. These metrics were designed to measure the

verlap between the computed against the manually drawn mask, with

alues between zero (no overlap) and one (perfect overlap) (see Mate-

ials and Methods). The results showed values close to one for the three

etrics across sites with a mean ( ± SEM) for Dice of 0.97 ± 0.009, Sen-

itivity of 0.96 ± 0.01, and Specificity of 0.99 ± 0.0006, supporting the

otion that our Deep Neural Network implementation for skull stripping

as very robust across a wide variety of images and sites. Nevertheless,

he sensitivity showed values between 1 and 0.9, indicating some degree

f false negative rate, and hence, that the predicted masks were smaller

han the reference. This can be explained by the tendency to overesti-

ate a manually drawn mask. In contrast, the false positives were very

carce since the specificity was very close to one. Indeed, Fig. 2 B illus-

rates the clear segmentation of five brain masks computed from images

ollected from different sites. 

.3. Surface quality prediction based on IQMs 

Using 58 IQMs we trained SVMs to classify volumetric structural im-

ges that produced 57 PREEMACS surfaces into groups with minimum,

edium, and large errors. We used visual scoring (see methods for de-

ails) on the properties of the volumetric structural images in order to

redict with SVMs the quality/reliability of the output surfaces. The

lassifier performance showed 66 ± 1.9 (mean ± STD) percent of cor-

ect predictions, considerably higher than chance (33.3%, for 3 classes).

owever, we hypothesized that not all metrics contain useful informa-

ion to predict the quality of the obtained surfaces. Therefore, we se-

ected those metrics that maximized the classification based on graph

nalysis (see Section 2.2.2 ). Notably, five IQMs showed large cluster-

ng power to distinguish between outcome surface categories ( Fig. 3 B),

orming a maximum clique with a high degree of centrality ( Fig. 3 C,D).

http://surfer.nmr.mgh.harvard.edu/fswiki/SurfaceRegAndTemplates
http://surfer.nmr.mgh.harvard.edu/fswiki/SurfaceRegAndTemplates
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Fig. 2. Performance of the PREEMACS brainmask tool that uses a Deep Learning convolutional neural network model. A. The violin plots for the Dice, 

Sensitivity and Specificity metrics computed across 18 sites (color coded, see inset) for 126 monkey images. B. Brain masks (red) for five monkeys of different 

provenance. 

Fig. 3. Clustering evaluation . A. Calculation of the graph-extraction threshold using the edge density of graphs computed with the Calinski–Harabasz score. The 

red line corresponds to the threshold that minimized the edge density. B. Degree of centrality of all the IQMs as graph nodes. Note that only five IQMs show a large 

interrelation within the graph, indicating their large capability to dissociate the outcome-surfaces. C. Graph extracted at the threshold. D. Maximum clique. 

7 
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Table 3 

Metrics with significant node interactions that form a maximum clique with a high degree centrality. 

Metric Description Value 

Summary GM p05 Calculates the 5th percentile of the distribution of grey 

matter intensity. 

Values closer to the median value indicate an accurate 

estimation of the gm ( Esteban et al., 2017 ). 

Signal to noise ratio (SNR GM) Calculates the signal to noise ratio in the grey matter 

tissue. 

Larger values are indicative of lower noise. Hence, higher 

values are preferred ( Dietrich et al., 2007 ). 

Tissue Probabilistic Mapping 

(TPM overlap WM and GM) 

This metric calculates the overlap between the tissue 

probability maps estimated from the image and the 

probability maps calculated from the NMT template. 

Values closer to 1 indicate a similarity to the template 

although deviating values may indicate inconsistencies 

in the image or individual image characteristics 

( Esteban et al., 2017 ). 

Volume fraction (ICV CSF) Estimation of the volume fraction of each tissue 

calculated on the FSL FAST’s segmentation. 

Normative values fall around 50%, 28% and 12% to 

GM/WM and CSF respectively ( Seidlitz et al., 2018 ). 

Fig. 4. PREEMACS FreeSurfer segmentation atlas. A–D. Axial sections of the brain at four dorsoventral levels shown in the inset of A. bg, basal ganglia; btm, 

brainstem; cca, anterior corpus callosum; ccma, mid anterior corpus callosum; ccm, mid corpus callosum; ccc, central corpus callosum; ccmp, mid posterior corpus 

callosum; cgm, cerebellar grey matter; cl, claustrum; cwm, cerebellar white matter; gm, grey matter; lv, lateral ventricle; hmp, hippocampus; thl, thalamus; vdc, 

ventral diencephalon; wm, white matter. 
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hese IQMs were: Summary GM Percentile 5 (SgmP05), Signal to Noise

atio of GM (SNR gm), Tissue Probabilistic Mapping to WM and GM

TMP wm/gm) and Volume Fraction of CSF (see Table 3 , sorted by rele-

ance). The SVMs using only these five IQMs showed an increase in per-

ormance to 72.8 ± 1.6%, supporting our hypothesis that critical IQMs

an predict the PREEMAC outcome. This result also suggests that the

emaining IQMs are features that do not contain information to predict

he quality of the obtained surfaces and may even add noise to the clas-

ification procedure ( Pavlidis et al., 2004 ). 

.4. PREEMACS FreeSurfer segmentation atlas 

A custom monkey segmentation with macaque labels of cortical and

ubcortical structures was constructed to obtain an accurate surface es-

imation in Module 3. Fig. 4 shows the volumetric label estimation in

MT space. We estimated the volumes of subcortical structures from 57

onkey images using this segmentation atlas, available for downloading

n a GitHub repository ( https://github.com/pGarciaS/PREEMACS ). 

.5. Registering the curvature and convexity: PREEMACS Rhesus 

arameterization file 

To obtain the vertex correspondence between subjects and to com-

are anatomical features between animals, it is critical to align each

onkey surface to a generic Rhesus reference template. We ran an it-

rative procedure on 33 monkey images (20 with minimum and 13
8 
ith medium surface errors, see below) to obtain a Rhesus monkey

tandard for the white matter curvature and convexity patterns, called

REEMACS Rhesus parameterization file (see Materials and Methods).

his file includes nine parameters that fully characterize the geometry

f the monkey cortical sulci. Fig. 5 A shows the resulting mean curvature

ata pattern template warped in 2-D, which is one of the nine elements

f the Rhesus parameterization file. Qualitatively, every expected sul-

us is associated with a concave region in the warped pattern template

 Fig. 5 ). All the subject surfaces were registered to this common space

nd can be expressed in a standard spherical coordinate system (i.e.

ongitude and latitude) to index a point on the folded cortical surface

or a given subject. Supplementary Figs. 1 and 2 show the average iso-

opic (size-change) and average anisotropic (shape-change) distortions

 Robinson et al., 2018 ) of twelve subjects (minimum errors in surface

stimation from 6 PRIME-DE sites) when registered from native to a

ommon space. Fig. 5 B–D shows lateral, mid-sagittal, and posterior

iews of the WM template surface as a unit sphere, defining the ge-

metrical relation between all the sulci of a standard monkey brain.

he template sphere is used to register all subjects for final surface

nalysis. 

.6. Average surfaces 

The average wm and pial surfaces with 163,842 vertices per hemi-

phere are depicted in Figs. 6 and 7 , respectively. The lateral, mid-

https://github.com/pGarciaS/PREEMACS
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Fig. 5. PREEMACS Rhesus sphere and curvature pattern template. A. Mean curvature data pattern template warped in 2-D. This curvature data pattern is one 

of nine elements of the PREEMACS Rhesus parameterization file used as a template to align the surfaces and obtain vertex correspondence between the subjects. B, 

C and D. Left WM template surface inflated as a sphere (Lateral, Mid-sagittal, and Posterior view, respectively). Sulci labeled for reference: as, arcuate sulcus; cas, 

callosal sulcus; ccs, calcarine sulcus; cgs, cingulate sulcus; cs, central sulcus; ecal, external calcarine sulcus; ias, inferior arcuate sulcus; iccs, inferior calcarine sulcus; 

ios, inferior occipital sulcus; ips, intraparietal sulcus; ls, lateral sulcus; lus, lunate sulcus; ms, marginal sulcus; ots, occipitotemporal sulcus; pos, parietal-occipital 

sulcus; prs, principal sulcus; ros, rostral sulcus; sas, superior arcuate sulcus; sccs, superior calcarine sulcus; sbps, subparietal sulcus; sts, superior temporal sulcus; 

mw, medial wall; sH, space of hippocampus. 
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agittal and ventral views of the surface templates show a high anatom-

cal fidelity with an actual monkey brain, with no apparent artifacts

n the curvature pattern across all sulci ( Fig. 6 ) and gyri ( Fig. 7 ). The

ndividual wm and pial surfaces are registered to these templates for

T and gyrification analysis with a one-to-one vertex correspondence,

hich allows for further group analysis in a common Rhesus monkey

pace. 

.7. PREEMACS generalization and identification of surface errors 

Fifty-seven sets of images from eleven different sites of the Primate

ata Exchange (PRIME-DE) database were run with the PREEMACS

ipeline. The resulting surfaces were evaluated for errors using a visual

nspection test that included a criteria for smoothness of the surfaces

nd segmentation (see Section 2.2.2 ). Since the site accounts for a large

ource of variability between input images, we compared the test errors

cross the eleven sites ( Fig. 8A ). Notably, the surfaces of 20 (out of 57)

onkey images from 8 sites showed minimal errors that needed negligi-

le or no manual correction ( Fig. 8A ). The pial and wm surfaces of repre-

entative animals with minimal surface errors for five sites are shown in

ig. 8 C. The most common segmentation errors ( Fig. 8 B) were located in

he wm of Parahippocampal ( Fig. 9 A), Frontal Pole ( Fig. 9 B), Occipital

ortex ( Fig. 9 C) and Anterior cingulate cortex ( Fig. 9 D). The average

ime to correct these images by an expert using a manual correction

oolbox from FreeSurfer was ~10 min. In addition, the surfaces of 13

nd 30 subjects showed medium and large errors, respectively. Notably,

hese poor brain extractions were predicted from the IQMs classification

nalysis (Supplementary Fig. 3). 
9 
.8. Cortical thickness 

We computed the CT of the PREEMACS Rhesus average surface of

he pial minus wm. It is evident in Fig. 10 A that the monkey CT is

ot homogenous, with a thicker cortex in the frontal lobe, especially

n the primary motor cortex, and a thinner cortex in the occipital lobe,

orroborating previous results ( Naselaris et al., 2006 ; Calabrese et al.,

015 ; Seidlitz et al., 2018 ). In addition, we compared the CT for the

62 vertices within the ROI in the left primary motor cortex (M1)

epicted in Fig. 10 B for the three outcome surface categories (mini-

um, medium or large errors) defined by the visual inspection test (see

ection 2.2.2 “Quality control module ”). The mean CT for this ROI was

imilar across outcome surface categories (five subjects per category,

ig. 10 B). However, the dispersion of the CT was considerably larger

or the surfaces with large segmentation errors ( Fig. 10 B,C). 

. Discussion 

.1. PREEMACS strengths 

PREEMACS is a robust, automatic, and flexible pipeline that stan-

ardizes all the needed steps, starting from raw structural MRI images,

or the extraction of cortical surfaces in the macaque. The program has

hree modules: 1) preprocessing, 2) quality control and 3) brain surface

stimation that are simple to run individually or as a complete image

rocessing workflow. 

Several key preprocessing steps have been fine-tuned in Module 1

o mitigate the severity of artifacts often seen in NHP imaging, such as
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Fig. 6. PREEMACS Rhesus average WM surface showing the curvature data pattern. A. Dorsal view. B. Lateral view. C. Ventral view. D. Mid-sagittal view. Sulci 

labeled for reference: cas, callosal sulcus; ccs, calcarine sulcus; cgs, cingulate sulcus; cs, central sulcus; ecal, external calcarine sulcus; ias, inferior arcuate sulcus; iccs, 

inferior calcarine sulcus; ios, inferior occipital sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lateral sulcus; lus, lunate sulcus; ms, marginal sulcus; mos, 

medial orbital sulcus; olfs, olfatory sulcus; ots, occipitotemporal sulcus; pos, parietal-occipital sulcus; prs, principal sulcus; ros, rostral sulcus; sas, superior arcuate 

sulcus; sbps, subparietal sulcus; sccs, superior calcarine sulcus; spcd, superior precentral dimple; sts, superior temporal sulcus. 
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ntensity non-uniformity (INU, due to coil sensitivity profiles and use

f multi-channel array coils), skull stripping (with anatomy of NHP be-

ng vastly different from that of humans), and erroneous identification

f dura as cortical tissue. Notably, our skull stripping method, based

n a deep learning algorithm, obtains accurate brain masks with large

IC, sensitivity and specificity values, solving one of the most common

ottlenecks in surface-based estimations. 

The prior assessment of the image quality is fundamental for the

utomatic implementation of the present pipeline. Using different met-

ics from MRIqc, Module 2 provides an SVM classification method that

redicts the quality of the resulting surfaces with a high degree of ac-

uracy. This prediction tool was validated on 57 images of eleven sites.

rucially, the performed graph analysis indicates five IQMs are critical

o predict PREEMACS surface outcome. 

Three Rhesus monkey templates were developed for surface estima-

ion in Module 3. The PREEMACS FreeSurfer segmentation atlas allows

or the structural parcellation of cortical and subcortical structures im-

roving the wm/gm segmentation. The PREEMACS Rhesus parameter-

zation template includes all the information about the curvature and

onvexity patterns of the monkey wm. This template is crucial to obtain

 vertex registration between subjects. Finally, the individual wm and

ial surfaces are registered to the PREEMACS Rhesus average surface so

hat the CT and gyrification measures can be obtained for group anal-

sis in a common Rhesus monkey space. Normalization is also needed

o co-register individual brains onto multimodal atlases of interest, such

s cytoarchitectonic, myeloarchitectonic, fiber tracking, etc., which can

ighly enrich the analytical potentiality of PREEMACS ( Goubran et al.,

019 ). Therefore, these three templates provide a large specificity in the

acaque surface estimation, with robust results across sites and image

ollection protocols. 
p  

10 
Another strength of the present workflow is the accurate identifica-

ion of the pial surface, which is achieved due to the combined informa-

ion of T1w and T2w volumes. Nevertheless, is important to emphasize

hat PREEMACS offers the option to run the workflow on T1w only,

lthough is highly recommended to use both input images for optimal

esults. 

A fundamental characteristic of PREEMACS is that all images and the

esulting surfaces are kept in native space, decreasing a large number

f potential for biases due to local deformations at different image pro-

essing steps. Thus, PREEMACS can be also used for longitudinal data,

btaining surfaces automatically and easily producing subject-specific

emplates to preserve within-subject changes for final statistical analy-

is ( Ashburner and Ridgway, 2013 ; Reuter et al., 2012 ). 

.2. PREEMACS generalizability 

PREEMACS solves practically all the image preprocessing issues re-

ently outlined by The PRIMatE-Data Exchange (PRIME-DE) Global Col-

aboration Workshop and Consortium (reference). Our pipeline general-

zed across a variety of input images performing properly the following

teps: process images with different head orientations, performs an au-

omatic cropping, can correct the strong intensity bias attributable to

he huge variety of coils used, carries out an automatic skull stripping

nd performs an automatic tissue segmentation. Importantly, all these

teps generalized across a dataset of images from eleven sites. Good sur-

ace reconstructions were obtained when the input images met the min-

mal IQMs criteria of our customized NHP quality control assessment.

pecifically, images that had a voxel resolution of 0.5 mm 

3 , adequate

NR (specially for GM), and a large contrast between WM-GM showed

roper segmentation and a good surface PREEMACS estimation. These
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Fig. 7. PREEMACS Rhesus average pial surface showing the curvature data pattern. A. Dorsal view. B. Lateral view . C. Ventral view. D. Mid-sagittal view. 

Sulci and gyri are labeled for reference. Sulci: cas, callosal sulcus; ccs, calcarine sulcus; cgs, cingulate sulcus; cs, central sulcus; ecal, external calcarine sulcus; ias, 

inferior arcuate sulcus; iccs, inferior calcarine sulcus; ios, inferior occipital sulcus; ips, intraparietal sulcus; los, lateral orbital sulcus; ls, lateral sulcus; lus, lunate 

sulcus; ms, marginal sulcus; mos, medial orbital sulcus; olfs, olfactory sulcus; ots, occipitotemporal sulcus; pos, parietal-occipital sulcus; prs, principal sulcus; ros, 

rostral sulcus; rhs, rhinal sulcus; sas, superior arcuate sulcus; sbps, subparietal sulcus; sccs, superior calcarine sulcus; spcd, superior precentral dimple; sts, superior 

temporal sulcus. Gyri: SFG, superior frontal gyrus; AG, angular gyrus; ASPG, anterior superior parietal gyrus; CgG, cingulate gyrus; Cu, cuneus; GR, gyrus rectus; 

ICgG, isthmus of the cingulate gyrus; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; LOrg, lateral orbital gyrus; MG, marginal gyrus; MFG, middle frontal 

gyrus; MOrg, medial orbital gyrus; OG, occipital gyrus; PCG, postcentral gyrus; PCu, precuneus; PhG, parahippocampal gyrus; PrCG, precentral gyrus; STG, superior 

temporal gyrus. 
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xceptionally good results were obtained from 20 images independently

f the MR scanner, the coil, and the monkey position (Supplementary

able 1). It is advisable that voxel resolution be high and isotropic, as

urface estimation can only be as good as the lowest resolution available

n the input volumes. In addition, the resulting CT was in the range of

reviously reported values ( Georgopoulos et al., 2007 ; Calabrese et al.,

015 ; Seidlitz et al., 2018 ). Therefore, our validation provides an impor-

ant piece of evidence for PREEMACS versatility and generalizability,

uling out any site effect in our tests. 

.3. Comparison with other pipelines for NHP surface reconstruction 

As far as we know, five additional pipelines for NHP surface estima-

ion exist ( Messinger et al., 2021 ). These are HCP-style NHP Pipeline

 Donahue et al., 2016 ; Donahue et al., 2018 ; Autio et al., 2020 ), CIVET-

acaque (Lepage et al., this issue), NHP-FreeSurfer, Precon_all, and

acapype, all of them contained in the Primate Resources Exchange

PRIME-RE) wiki ( Messinger et al., 2021 ). All these tools for automatic

xtraction of cortical thickness in NHP show different levels of com-

lexity, robustness, and automation. Due to scope constraints, we do

ot provide a formal quantitative comparison between pipelines. Quali-

atively, the HCP-style NHP Pipeline has been validated across humans,

himpanzees, multiple monkey species, and marmosets ( Glasser et al.,

013 ; Donahue et al., 2016 ; Donahue et al., 2018 ; Autio et al., 2020 ),

nd automatically identifies and labels the brain stem, cerebellum, and

laustrum. Furthermore, this analytical environment includes additional
11 
ownstream features, such as structural, functional and diffusion image

reprocessing tools. PREEMACS does not possess such features. The full

escription of CIVET-Macaque is part of this special issue on monkey

RI and shows similarities PREEMACS in its overall scope and utility.

oth CIVET-Macaque and PREEMACS provide crucial adaptations and

xtensions of previously available processing pipelines for the estima-

ion of cortical surfaces in humans, with the former relying on CIVET

Lepage et al., this issue) and the latter building on FreeSurfer. Notably,

REEMACS has a modular design, performs automatic and robust skull-

triping through a convolutional neural network, carries out quality con-

rol assessment of input images, retains all image volumes and resulting

urfaces in native space, uses custom made macaque templates within

he pipeline, and (if input data is deemed of sufficient quality by the first

odule), is able to run fully automatically and provide cortical thick-

ess data suitable for vertex-wise group analyses. In the spirit of col-

aboration and open science characteristic of PRIME-DE ( Milham et al.,

020 ), we envision a close partnership between all groups working on

HP surface estimation ( Messinger et al., 2021 ) to ultimately provide

n integrated pipeline that dynamically evolves as the field grows. 

.4. Continuous updating of deep learning neuronal networks and SVMs 

The PREEMACS brainmask tool was trained on 126 images from

8 PRIME-DE sites. The trained convolutional neural network model

as quite robust, with predicted masks that showed close to perfect

alues for Dice, sensitivity and specificity. Nevertheless, an issue with
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Fig. 8. Evaluation of errors in the PREEMACS cortical surfaces across sites. A. Pial (left) and wm (right) surfaces of representative monkeys with minimal surface 

errors for five sites labeled in the x -axis. B. Frequency of subjects with minimal, medium, and large errors in the PREEMACS cortical surfaces as a function of site 

( n = 11). C. Number of subjects with minimal errors in B that showed segmentation errors in five cortical areas across seven sites. The shaded grey area corresponds 

to the total number of subjects with minimal errors for each site; each subject can have one or more areas with minimal errors. PHwm, Parahippocampal wm; FPwm, 

Frontal Pole wm; TmpAC, Temporal anterior cortex; Owm, Occipital wm; Acc, Anterior cingulate cortex. 

Fig. 9. Most common “minimal ” segmentation errors. A. Parahippocampal wm (PHwm). B. Frontal Pole wm (FPwm) C. Occipital wm (Owm). D. Anterior 

cingulate cortex (Acc). Blue line for pial and yellow line for wm surface. Different individual shown in each panel. 
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p

odel building is the generalizability of prediction for images collected

ith conditions not included in the original multidimensional space

 Esteban et al., 2017 ). A similar problem is confronted on the SVM classi-

cation of fifty-seven surfaces based on the image metrics of our quality

ontrol routine. It is probable that no convergence has been obtained yet
12 
n these models due to the limited amount of input images and their con-

trained range of parameter values. Hence, these PREEMACS modules

hould be continuously updated and the models rebuilt until our skull-

tripping and the quality control methods show robust performance for

ractically any image collection circumstance. 
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Fig. 10. Cortical thickness. A. Lateral, dorsal and medial views of the CT computed from the PREEMACS Rhesus average surfaces of pial minus wm shown in 

Figs. 6 and 7 . B. Mean and standard deviation of the CT from five subjects pertaining to each of the three outcome surface categories (1 = minimum, 2 = medium 

or 3 = large errors) classified using the Visual Inspection Test. The inset shows the location of the ROI of the primary motor cortex used to compute the CT. C. 

Distribution of CT across all vertices in the M1 ROI for a representative subject from each of the three outcome surface categories. 
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.5. PREEMACS limitations 

Besides the potential lack of model convergence discussed above,

REEMACS does not include a macaque GCA atlas to parcellate in the

reeSurfer environment the corpus callosum, cerebellum and pons. In-

tead we use the human GCA atlas that produced some segmentation

rrors in the cerebellum and parts of visual cortex. In addition, there is

o parcellation tool to identify cortical areas and automatically define

OIs for analysis between groups of animals. 

. Conclusion 

PREEMACS is a new, flexible, versatile and robust pipeline for

xtraction of the Rhesus monkey cortical brain surface. The entire

ode is freely available at GitHub ( https://github.com/PREEMACS/

REEMACS ). The extraction of cortical surfaces in the macaque was per-

ormed with minimal or no manual intervention when the quality of the

nput images reached a certain threshold, showing a large success in

urface reconstruction across the tested sites around the world. Consid-

ring the recent efforts toward data sharing in the non-human primate

eld ( Milham et al., 2018 ), PREEMACS is a validated and user friendly

ipeline for the automatic extraction of cortical surfaces, which can be

sed by the growing macaque neuroimaging community not only for

ortical thickness estimation, but also to perform multimodal imaging

nalysis in the same geometrical space. 

ata available 

PREEMACS workflow code, manual brain masks, wm and pial sur-

aces, cortical ribbon and wm segmentation are available on https:

/github.com/pGarciaS/PREEMACS . 
13 
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