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Introduction: Electroencephalographic (EEG) data quality is severely

compromised when recorded inside the magnetic resonance (MR)

environment. Here we characterized the impact of the ballistocardiographic

(BCG) artifact on resting-state EEG spectral properties and compared the

effectiveness of seven common BCG correction methods to preserve EEG

spectral features. We also assessed if these methods retained posterior

alpha power reactivity to an eyes closure-opening (EC-EO) task and

compared the results from EEG-informed fMRI analysis using different BCG

correction approaches.

Method: Electroencephalographic data from 20 healthy young adults were

recorded outside the MR environment and during simultaneous fMRI

acquisition. The gradient artifact was effectively removed from EEG-fMRI

acquisitions using Average Artifact Subtraction (AAS). The BCG artifact was

corrected with seven methods: AAS, Optimal Basis Set (OBS), Independent

Component Analysis (ICA), OBS followed by ICA, AAS followed by ICA,

PROJIC-AAS and PROJIC-OBS. EEG signal preservation was assessed by

comparing the spectral power of traditional frequency bands from the

corrected rs-EEG-fMRI data with the data recorded outside the scanner. We

then assessed the preservation of posterior alpha functional reactivity by

computing the ratio between the EC and EO conditions during the EC-EO

task. EEG-informed fMRI analysis of the EC-EO task was performed using

alpha power-derived BOLD signal predictors obtained from the EEG signals

corrected with different methods.

Results: The BCG artifact caused significant distortions (increased absolute

power, altered relative power) across all frequency bands. Artifact

residuals/signal losses were present after applying all correction methods.

The EEG reactivity to the EC-EO task was better preserved with ICA-

based correction approaches, particularly when using ICA feature extraction
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to isolate alpha power fluctuations, which allowed to accurately predict

hemodynamic signal fluctuations during the EEG-informed fMRI analysis.

Discussion: Current software solutions for the BCG artifact problem offer

limited efficiency to preserve the EEG spectral power properties using this

particular EEG setup. The state-of-the-art approaches tested here can be

further refined and should be combined with hardware implementations to

better preserve EEG signal properties during simultaneous EEG-fMRI. Existing

and novel BCG artifact correction methods should be validated by evaluating

signal preservation of both ERPs and spontaneous EEG spectral power.

KEYWORDS

simultaneous EEG-fMRI, ballistocardiographic artifact, EEG signal preservation, EEG-
informed fMRI, EEG spectral analysis

1 Introduction

Simultaneous Electroencephalography and functional
Magnetic Resonance Imaging (EEG-fMRI) records the
electrophysiological and hemodynamic correlates of human
brain activity non-invasively, aiming to combine the strengths
of both modalities (Huster et al., 2012; Laufs, 2012; Scrivener,
2021; Ebrahimzadeh et al., 2022). EEG measures the sum of
extracellular currents generated by the synchronous activity
of large populations of neurons, using electrodes attached
to the subject’s scalp (Schomer and da Silva, 2011), while
fMRI quantifies changes in cerebral blood oxygenation,
blood flow and blood volume that result from neurovascular
coupling responses mediated by astrocytes, blood vessels, and
neurons and therefore, represents an indirect correlate of
neuronal activity (Huettel et al., 2004; Figley and Stroman,
2011). Simultaneous EEG-fMRI recording aims to better
understand the complex dynamics underlying brain function
by combining EEG’s temporal resolution and fMRI’s spatial
resolution (Mulert and Lemieux, 2010; Scrivener, 2021;
Ebrahimzadeh et al., 2022). Simultaneous EEG-fMRI also
opens the possibility of directly studying interactions between
electrophysiological and hemodynamic responses (Jorge et al.,
2014) which cannot be achieved when signals are recorded
independently (Mulert and Lemieux, 2010; Jorge et al., 2014;
Ebrahimzadeh et al., 2022).

The major challenge of simultaneous EEG-fMRI recording
is the presence of artifacts that compromise the data quality
of both modalities (Ives et al., 1993; Mulert and Lemieux,

Abbreviations: EEG-fMRI, simultaneous EEG-fMRI; GA, gradient
artifact; BCG, ballistocardiographic; AAS, average artifact subtraction;
OBS, Optimal Basis Set; ICA, Independent Component Analysis;
PROJIC, PROJection onto Independent Components; IFE, Independent
component analysis Feature Extraction; EC-EO, eyes closure-opening;
rs, resting-state.

2010). EEG hardware may produce distortions and signal
loss in MRI due to electromagnetic noise generated by the
EEG amplifier (Krakow et al., 2000), B0 field inhomogeneities
produced by magnetic susceptibility of EEG electrodes (Krakow
et al., 2000; Mullinger et al., 2008), and B1 field attenuation
produced by EEG leads (Luo and Glover, 2011; Klein et al.,
2015). Image distortions can be avoided by using adequate
electrode materials and placing the EEG amplifier inside
a radiofrequency containment system, efficiently preserving
MRI data quality at 3T (Krakow et al., 2000; Mullinger
et al., 2008; Laufs, 2012). On the other hand, the magnetic
resonance (MR) environment severely compromises EEG
data quality (Ives et al., 1993; Lemieux et al., 1999). Two
main artifacts contaminate the EEG data during simultaneous
EEG-fMRI recordings: The gradient artifact (GA) and the
ballistocardiographic (BCG) artifact. The GA results from
induced currents over the EEG electrodes and leads that are
produced by magnetic flux variations due to the gradients
switching during image acquisition (Allen et al., 2000). Since
the properties of the GA depend entirely on the MR sequence,
these are highly stable over time and across individuals.
Therefore, Average Artifact Subtraction (AAS) approaches
(Allen et al., 2000) combined with hardware synchronization
between EEG and fMRI equipment (Mandelkow et al.,
2006) have proven to be effective in completely removing
the GA.

The BCG artifact is a large-amplitude artifact that results
from the induced currents caused by cardiac related movement
of the EEG sensors when the subject is inside a strong
magnetic field (Allen et al., 1998; Yan et al., 2010). The largest
BCG artifact peak is typically observed ∼200 milliseconds
after the QRS-wave recorded on the electrocardiogram (Allen
et al., 1998). The artifact mainly spans cardiac harmonic
frequencies ranging between 1 and 15 Hz, overlapping
with the frequency of neural oscillations captured by EEG
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(Debener et al., 2008). Given its large variability between
and within individuals, the BCG artifact represents a major
challenge for EEG-fMRI. Several signal processing tools have
been developed to deal with the BCG artifact and reduce
its contribution from the recordings while preserving EEG
signal properties (Bullock et al., 2021; Ebrahimzadeh et al.,
2022). As summarized in Bullock et al. (2021) the most
popular BCG correction approaches include Average Artifact
Subtraction (AAS); (Allen et al., 1998), Optimal Basis Set
(OBS); (Niazy et al., 2005), Independent Component Analysis
(ICA); (Srivastava et al., 2005) and the combination of these:
OBS-ICA (Debener et al., 2006) and AAS-ICA (Mayeli et al.,
2021). Some other methods have also been recently proposed
including the PROJIC-AAS and PROJIC-OBS methods (Abreu
et al., 2016). Even though there have been studies comparing
these methods, most of such studies have been based on
assessing artifact reduction by comparing the amplitude of
the artifact waveform (Mullinger et al., 2013b; Marino et al.,
2018) or the reduction of its spectral components from the
EEG signals before and after applying artifact correction
(Abreu et al., 2016; Bullock et al., 2021). Although assessing
artifact removal is important when validating BCG correction
methods, the ultimate goal is to preserve the integrity of
the functional properties of EEG signals. However, there are
actually less studies focusing on signal preservation than
artifact reduction (Marino et al., 2018; Bullock et al., 2021).
Importantly, most of these studies have focused on evaluating
the preservation of event related responses obtained from
task paradigms (Debener et al., 2006; Assecondi et al., 2010;
Vanderperren et al., 2010), where the high number of epochs
used for averaging significantly increases the signal-to-noise
ratio of the signals, as compared to continuous recordings
(Schomer and da Silva, 2011). With a growing number of
alternatives proposed to deal with the BCG artifact, there is a
tremendous need to evaluate the efficiency of these methods
to also preserve the spectral properties of spontaneous EEG
oscillations recorded during resting-state and task paradigms,
and to address the impact of BCG artifact residuals/EEG
signal loss on multimodal data analysis results (Marino
et al., 2019; Bullock et al., 2021). Therefore, the aim of this
work was to characterize the impact of the BCG artifact
on spontaneous EEG spectral power and to compare the
effectiveness of the most commonly used BCG correction
methods to remove the artifact while preserving underlying
EEG signals. Specifically, we evaluated the spectral profile of
resting-state EEG signals recorded during EEG-fMRI before
and after BCG artifact correction, as compared to the spectral
power of the EEG data recorded outside the scanner. We
then assessed whether the functional reactivity of posterior
EEG alpha power to a simple eyes closure-opening task was
preserved after BCG removal and evaluated how the choice of
BCG correction method affected the results from EEG-informed
fMRI analysis.

2 Materials and methods

2.1 Participants

EEG and MRI data were collected from 20 healthy male
individuals (mean age = 26 years; SD = 3.8 years) who were all
graduate students from the Universidad Nacional Autónoma
de México, campus Juriquilla (UNAM) community. Before
enrolling participants into the study, the research protocol
was explained to them both verbally and via an informed
consent form. A psychologist with experience applying
neuropsychological tests (JG) administered the Spanish version
of the MINI International Neuropsychiatric Interview (Sheehan
et al., 1997; Ferrando et al., 1998). Only cognitively healthy
individuals who did not have diagnosis of any neurological or
psychiatric disease or history of substance abuse were invited
to participate in the study. As a last filter, participants were
asked to fill in a brief checklist to corroborate the presence of
counter-indications to perform the MR protocol. Individuals
that fulfilled the requirements to be included in the sample
and agreed to participate in the experiment signed the consent
form and were recruited for the study. This research project was
conducted in accordance with the principles of the Declaration
of Helsinki for experiments involving human participants and
was approved by the Bioethics Committee of the Instituto de
Neurobiología, UNAM.

2.2 EEG data acquisition

Both EEG and MRI data were acquired in a single session
lasting around 2.5 h. EEG data were recorded using a GES
400 MR system equipped with a 32-channel MR-compatible
EEG cap (Electrical Geodesics Inc., Eugene, OR, USA). The
sampling rate was 1000 Hz and Cz was used as the reference
electrode. Electrode impedances were measured before starting
the outside EEG recordings and all sensors were adjusted to keep
impedance values below 50 k-ohms. A silk mesh was placed over
the electrode cap and bandages were used to reduce electrode
movement and improve EEG data quality (Ives et al., 1993;
Bénar et al., 2003). Electrocardiogram (ECG) data was recorded
using MR-compatible patch electrodes. The active electrode was
placed over the heart (slightly to the left of the sternum bone)
and the reference electrode was placed over the medial end of
the left collarbone.

Electroencephalographic data were first recorded outside
the MR environment, with the participant lying down in supine
position, same as inside the MR-scanner. The outside EEG
recording protocol consisted of 2 min of eyes-closed resting-
state (Outside rs-EEG), 2 min of eyes-open EEG (not used in
this study) and 2 min of an eyes closure-opening task (Outside
EEG EC-EO) consisting of 20-s blocks, starting with eyes-closed.
After the outside EEG recording, the participant was taken into
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the MR room. Once the participant was inside the scanner,
EEG leads were carefully examined in search for loops and
oriented in a straight line parallel to the B0 magnetic field, to
reduce EEG artifacts and the risk of radiofrequency-induced
heating of the sensors (Yan et al., 2009; Chowdhury et al.,
2015; Assecondi et al., 2016). Sandbags and tape were used to
minimize electrode leads movement and soft pads were placed
between the receiving coil and the subject’s head to reduce
participant’s movement (Bénar et al., 2003; Bullock et al., 2021;
Ebrahimzadeh et al., 2022). The EEG amplifier was placed next
to the bed of the scanner behind the 400 Gauss magnetic
field iso-intensity line, in accordance with the safety guidelines
provided by the vendor. Lights and ventilation systems were
turned off during the entire session, to avoid further artifacts
in the EEG signal (Mullinger et al., 2013a; Nierhaus et al.,
2013; Rothlübbers et al., 2015). Due to our facility regulation
protocols, the helium cooling pump remained active for all of
the recordings.

After ensuring the participant was feeling comfortable
inside the scanner, we recorded 2 min of eyes-closed EEG
(Inside rs-EEG) without image acquisition. We then began the
simultaneous EEG-fMRI protocol, which consisted of 10 min of
eyes-closed resting-state (rs-EEG-fMRI) and 4 min of the eyes
closure-opening (EEG-fMRI EC-EO) task.

2.3 MRI data acquisition

Brain magnetic resonance images were obtained with a
Discovery MR750 3.0T scanner (General Electric, Milwaukee,
WI, USA), equipped with a 32-channel array head coil. Blood-
oxygen level-dependent (BOLD) contrast images were acquired
for the rs-EEG-fMRI and EEG-fMRI EC-EO conditions using an
echo-planar reconstruction (spatial resolution = 4 × 4 × 4 mm3

voxels, TR = 2000 ms, TE = 40 ms). High resolution
structural sagittal T1-weighted images (spoiled gradient-
recalled sequence; resolution of 1 × 1 × 1 mm3 voxels;
TR = 8.1 ms; and TE = 3.2 ms) were collected following the
simultaneous EEG-fMRI recordings, after the EEG cap was
removed from the participant’s head.

2.4 EEG preprocessing and BCG
artifact removal

The Outside rs-EEG, Inside rs-EEG, rs-EEG-fMRI, Outside
EEG EC-EO and EEG-fMRI EC-EO data were preprocessed
separately following the same pipeline, with the exception of the
artifact removal steps that were added to correct the gradient
(rs-EEG-fMRI, EEG-fMRI EC-EO) and the BCG (inside rs-
EEG, rs-EEG-fMRI, EEG-fMRI EC-EO) artifacts from the data
acquired inside the MR-environment.

The GA removal was the first preprocessing step for
the rs-EEG-fMRI and the EEG-fMRI EC-EO datasets and

was implemented directly in the Net Station software
(Electrical Geodesics Inc., Eugene, OR, USA). We applied
AAS by averaging the signals aligned with the event markers
automatically generated by the hardware synchronization
between the EEG amplifier and the MR scanner clock, using
a sliding-window consisting of 5 TR volumes to generate the
template. The rest of the preprocessing for all datasets was
performed using customized scripts calling EEGLAB (Delorme
and Makeig, 2004) and MATLAB (The MathWorks, Inc.,
Natick, MA, USA) functions. EEG data from all conditions
(.mff files) were imported into MATLAB following the EEGLAB
data structure by using the MFFmatlabIO plugin. Only data
from the eighteen 10–20 system electrodes (Fp1, Fp2, F3,
F4, F7, F8, Fz, C3, C4, P3, P4, Pz, T3, T4, T5, T6, O1, O2;
Cz was used as reference) were considered for the analysis.
Channel locations were set using the corresponding Geodesic
Sensor Net template from EEGLAB. Continuous EEG data
were band-pass filtered (1–50 Hz) and then segmented into
2-s epochs. EEG signals were visually inspected, and epochs
containing high amplitude artifacts related to the subject’s
movements or blinks were rejected. Additionally, in the case
of the Inside rs-EEG, rs-EEG-fMRI and EEG-fMRI EC-EO
datasets we corrected the BCG artifact using one of seven
methods: (1) AAS, (2) OBS, (3) ICA, (4) OBS followed by ICA,
(5) AAS followed by ICA, (6) PROJIC-AAS, and (7) PROJIC-
OBS. The detection of QRS peaks and the implementation
of the AAS and OBS-based correction approaches (Iannetti
et al., 2005; Niazy et al., 2005) were performed using the
EEGLAB FMRIB plug-in provided by the University of Oxford
Centre for Functional MRI of the Brain. A constant delay of
210 milliseconds between the cardiac event markers and the
main BCG peak was assumed for all AAS and OBS-based
methods, which is the default value in the FMRIB plugin (Allen
et al., 1998). For OBS-based corrections, the four principal
components that explained most of the artifact’s waveform
variance were automatically selected and regressed-out from
the data. ICA was implemented using EEGLAB’s runica
algorithm. A variable number of artifact-related independent
components (ICs) were manually selected for each subject,
based on criteria suggested in previous studies (Srivastava
et al., 2005; Debener et al., 2006, 2008; Iannotti et al., 2014).
Specifically, we removed ICs displaying all three of the following
features: (1) time-series with rhythmic peaks that followed the
ECG trace, (2) increased power showing multiple peaks at
cardiac-related frequencies, and (3) topographical distribution
of power showing either left-right or anterior-posterior
polarity inversion. PROJIC-AAS and PROJIC-OBS methods
were implemented using the code provided by Abreu et al.
(2016). Both methods rely on applying the same functions
from the FMRIB plugin, but in this case the AAS and OBS
corrections are applied on the ICs timeseries before retrieving
the original EEG time series by multiplying the EEG activations
∗ mixing matrix W−1, in contrast to applying the correction
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directly on the sensor timeseries as with the regular AAS
and OBS approaches. For both PROJIC approaches, we used
the recommended default parameters, with the only major
difference that we used the same ICs we manually selected
for the ICA approach, rather than using the PROJIC-ICA
automatic selection of the BCG-related components (which
failed to accurately identify the BGC-related ICs for many
subjects).

2.5 Data analysis

2.5.1 Eyes-closed resting-state EEG
To evaluate the impact of the BCG artifact on EEG spectral

power and to test if resting-state EEG spectral properties
could be preserved after artifact correction, we compared the
absolute and relative power from the corrected rs-EEG-fMRI
signals vs. the Outside rs-EEG. The first available twenty-two
(minimal number of clean epochs available per subject), 2-s
non-overlapping clean epochs from the Outside rs-EEG and
rs-EEG-fMRI conditions for each subject were selected for
quantitative analysis. We computed the fast Fourier transform
of the signals and then calculated the absolute and relative power
across traditional EEG frequency bands (Schomer and da Silva,
2011), defined as follows: Delta = 1–3 Hz, Theta = 4–7 Hz,
Alpha = 8–12 Hz, Slow beta = 13–17 Hz, Fast beta = 18–30 Hz,
and Gamma = 31–50 Hz.

To obtain a qualitative measure of the BCG artifact
contribution to each frequency band and visualize the variability
across subjects before and after artifact correction, we calculated
the percentage change in absolute power from the rs-EEG-fMRI
relative to the outside rs-EEG [(rs-EEG-fMRI power/outside rs-
EEG power) ∗100] −100, for each electrode of each subject.
For the statistical analysis, we used one-way repeated measures
ANOVAs to compare the log-transformed absolute power and
the relative power values of the corrected rs-EEG-fMRI and
the Outside rs-EEG. Each frequency band was considered
independently. Bonferroni correction for multiple comparisons
was applied to the p-values of the post-hoc test between the
Outside rs-EEG and the seven corrected versions of the rs-
EEG-fMRI data. Adjusted p-vales below 0.05 were considered
to be significant. To discard the contribution of GA residuals
and further validate our results, we repeated our analysis
using the Inside rs-EEG instead of the rs-EEG-fMRI data
(Supplementary material).

In addition to the absolute and relative spectral power
analysis, we tested the reliability of the estimates of the
individual alpha peak frequency and alpha center of gravity
from the power spectrum of the resting-state signals collected
during EEG-fMRI. Following the methods and using the code
provided by Corcoran et al. (2018), we employed an automated
approach based on applying a Savitzky–Golay filter (Klimesch
et al., 1990) to calculate each individual’s alpha peak frequency

and center of gravity. We set the band-pass filter from 1 to
40 Hz and looked for the alpha peak in the range between
7 and 13 Hz. We set a value of 11 for the Savitzky–Golay
filter frame width and a k = 5 for the polynomial order. For
the statistical comparison, we used one-way repeated measures
ANOVAs to compare the individual alpha peak frequency and
center of gravity estimates from the corrected rs-EEG-fMRI
and the Outside rs-EEG (Supplementary material). We applied
Bonferroni correction to account for multiple comparisons and
considered adjusted p-vales below 0.05 to be significant. Once
again, we repeated our analysis using the Inside rs-EEG instead
of the rs-EEG-fMRI data (Supplementary material).

2.5.2 Eyes closure-opening task EEG data
Given that the posterior alpha power reactivity to the

eyes closure-opening task is one of the most prominent and
consistent features observed in human EEG recordings (Berger,
1929; Barry et al., 2007; Klimesch et al., 2007; Barry and De
Blasio, 2017), we selected this task to evaluate if alpha power
functional reactivity was preserved in the EEG-fMRI signals
corrected using different BCG removal approaches. The first
available twenty, 2-s non-overlapping EEG epochs from the
eyes-closed and eyes-open blocks of the Outside EEG EC-EO
and the EEG-fMRI EC-EO conditions were selected for each
subject and submitted to fast Fourier transform, as implemented
previously. Besides the seven BCG correction methods used
before, an eighth method consisted of using ICA as a feature
extraction tool (IFE), aiming to isolate alpha power activity
related to the task. In this case, instead of removing the ICs
associated with the BCG artifact we only retained components
with a time-series that showed clear alpha activity during
the EC blocks, a peak around 10 Hz in its power spectrum,
and a topographical distribution showing higher alpha power
in posterior electrodes. To estimate a quantitative difference
between the two physiological states, we calculated a ratio
by using the signal from occipital O1 and O2 electrodes and
dividing the alpha power of the EC over the EO condition (EC-
EO alpha power ratio). We performed the statistical analysis on
the EC-EO alpha power ratio values rather than the raw eyes-
open and eyes-closed alpha power values given that absolute
and relative alpha power is highly variable across individuals
(Shaw, 2003). To assess signal preservation, a one-way repeated
measures ANOVAs was performed to compare the EC-EO alpha
power ratio between the Outside EEG EC-EO and the EEG-
fMRI EC-EO corrected with different methods (AAS, OBS, ICA,
OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-OBS, and IFE).
As before, Bonferroni-correction for multiple comparisons was
applied to the p-values of the post hoc comparisons, and adjusted
p-values > 0.05 were considered as significant.

2.5.3 EEG-informed fMRI analysis
Functional magnetic resonance imaging data preprocessing

and analysis was performed using the FSL software (Jenkinson
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et al., 2012). Preprocessing included motion correction, slice
timing (interleaved acquisition) correction, brain extraction,
spatial smoothing using a Gaussian kernel (full-width-half-
maximum = 6 mm), high-pass temporal filtering (cutoff
frequency = 0.01 Hz), and registration to each subject’s
structural image followed by spatial normalization to the
Montreal Neurological Institute standard space (MNI ICBM-
152 template) using linear transformations with seven and
twelve degrees of freedom, respectively. EEG-informed fMRI
first-level analysis was performed using alpha power fluctuations
to derive a BOLD signal predictor for each subject. To generate
the predictors, we selected either the O1 or O2 channel
timeseries (selected on an individual basis to obtain the best
available predictor) and calculated the alpha band absolute
power for each 2-s epoch. The values corresponding to epochs
that were eliminated due to excessive movement or eye-related
artifacts were replaced using a simple interpolation method
(taking the average of the previous and following epoch). The
resulting time series (60 timepoints) were convolved with a
gamma hemodynamic response function in the GLM tool of
FSL’s FEAT to generate the BOLD signal predictors. We focused
on the negative contrast, as our hypothesis was that alpha power
fluctuations would be negatively correlated with BOLD signal.
We first conducted this analysis on the full sample (n = 20),
though no significant associations were found between the
predictors and the BOLD signal using any method, due to
some individuals that did not show any associations between
the signals in the first-level analysis. We therefore repeated the
analysis after removing these 5 individuals, which corresponds
to the data presented here.

To assess the impact of BCG artifact residuals on preserving
the EEG functional reactivity for multimodal integration, the
EEG-informed fMRI analysis was repeated using the alpha
power predictors derived from the same EEG signals, corrected
using each method. Second-level analyses were performed using
permutation-based inference (Nichols and Holmes, 2002) with
threshold-free cluster enhancement to account for multiple
comparisons (Smith and Nichols, 2009) as implemented by FSL’s
randomize function. Group-level statistical parametric maps
obtained from the EEG-informed fMRI analyses were compared
with conventional fMRI analysis results, performed using the
task design to build the hemodynamic response predictor.

2.6 Data/code availability statement

All the data used in this study is available on an open data
repository: “Simultaneous EEG-fMRI dataset,” Mendeley Data,
V1, doi: 10.17632/crhybxpdy6.1 (Gallego-Rudolf et al., 2022).
All the preprocessing and analysis steps in this study used a
combination of existing documented functions from MATLAB
v.18b (The MathWorks, Inc., Natick, MA, USA) and EEGLAB
v.14.1.2b (Delorme and Makeig, 2004) software packages.

EEG-informed fMRI was conducted using the FSL software
(Jenkinson et al., 2012). Statistical analysis was performed in
R Studio, using R v.4.1.1 (R Core Team, 2022) and ggplot2
(Wickham, 2016) was used to generate the plots.

3 Results

3.1 Resting-state–BCG artifact
reduction and preservation of EEG
spectral features

Given that the GA is entirely dependent on the properties of
the MR sequence, having an adequate synchronization between
the EEG and MRI hardware and using the AAS approach
allowed to effectively remove the GA from the signals of all
participants. The first panel of Figure 1 shows the comparison
between the average power spectrum across all electrodes from
all subjects from the Outside rs-EEG (black), the rs-EEG-
fMRI data before GA correction (blue) and the rs-EEG-fMRI
data after GA and before BCG artifact correction (red). The
rest of the panels from Figure 1 show the group average
power spectra for the Outside rs-EEG (black, same for all
panels), the rs-EEG-fMRI before BCG artifact correction (red,
same for all panels) and its corrected version (green) using
each BCG correction approach. The main contribution of
the BCG artifact to the power spectrum can be observed as
a generalized increase in spectral power, more pronounced
in the theta and slow beta range (red power spectrum). In
general ICA-based approaches (ICA, but specially OBS-ICA
and AAS-ICA) performed better in reducing the BCG-induced
absolute power increases, partially retrieving the characteristic
shape of the eyes-closed rs-EEG spectrum. The number of
components removed for each method (mean; SD; range)
was 9.2; 1.8; 6–12 for ICA, 4.8; 1.2; 3–7 for OBS-ICA and
5.7; 1.4; 3–8 for AAS-ICA. Supplementary Figure 1 shows
that similar results were obtained when calculating the power
spectrum from the Inside rs-EEG, instead of the rs-EEG-fMRI
data.

Figure 2 shows the percentage change in power of the rs-
EEG-fMRI relative to the Outside rs-EEG, after correcting the
rs-EEG-fMRI signal with different BCG removal approaches.
Each matrix corresponds to a particular method and frequency
band and shows all electrodes (rows) for every subject
(columns). As can be observed, a considerable increase in power
across all bands was present in the uncorrected rs-EEG-fMRI
data, with theta and slow beta being the most affected frequency
bands. Again, ICA, OBS-ICA and AAS-ICA correction methods
were more efficient in suppressing the contribution of the BCG
artifact, by reducing the BCG-induced power increase especially
in the delta, theta, and alpha bands. However, even when
using ICA–based corrections, artifact residuals remained for
most subjects, particularly in the fast beta and gamma bands.
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FIGURE 1

Average power spectrum (and standard deviation) computed from the resting-state eyes-closed EEG signal of all electrodes from all subjects.
The first panel shows the Outside rs-EEG (black) and the rs-EEG-fMRI data before (blue) and after (red) GA correction. The rest of the panels
show a comparison between the Outside rs-EEG (black line, repeated in all panels), the rs-EEG-fMRI after GA removal but before BCG artifact
correction (red line, repeated in all panels) and its corrected version (green) after using one of seven BCG correction methods: Average Artifact
Subtraction (AAS), Optimal Basis Set (OBS), Independent Component Analysis (ICA), OBS-ICA, AAS-ICA, PROJection onto Independent
Components (PROJIC)-AAS or PROJIC-OBS. ICA-based corrections performed better in reducing the BCG artifact contribution and preserving
the spectral profile of rs-EEG-fMRI signals, though power remained higher compared to the Outside rs-EEG.

Moreover, we also observed decreases in power compared to the
outside rs-EEG, reflecting potential EEG signal losses produced
during artifact correction.

The statistical analysis comparing the absolute power across
the six frequency bands is shown in Figure 3. Significant
statistical differences were found between the power of the
Outside rs-EEG and the rs-EEG-fMRI for all frequency bands
(delta F3.46,65.67 = 61.34, p < 0.001; theta F3,56.98 = 165.68,
p < 0.001; alpha F2.89,54.87 = 141.33, p < 0.001; slow beta
F2.97,56.36 = 239.32, p < 0.001; fast beta F2.98,56.55 = 96.57,
p < 0.001; gamma F2.58,48.94 = 82.62, p < 0.001), regardless
of the BCG correction method employed. Very similar results
were obtained for the Inside rs-EEG data (Supplementary
Figures 2, 3).

Even though the BCG-induced power increase across
frequency bands remained significant after artifact correction,
qualitatively the rs-EEG-fMRI data showed that the individual
power estimates computed after applying ICA-based correction
approaches displayed a more similar distribution compared
to the Outside rs-EEG values. Therefore, we also analyzed
the relative power of each frequency band and compared
the Outside rs-EEG vs. the corrected versions of the rs-EEG-
fMRI data (Figure 4). Delta relative power was significantly
decreased, while slow beta remained significantly increased
across all correction methods (F2.9,55.18 = 79.33, p < 0.001;
F2.48,47.11 = 65.84, p < 0.001). Theta relative power from the
ICA, OBS-ICA and AAS-ICA approaches was not significantly
different compared the Outside rs-EEG, which was the case

for all other methods (F2.79,52.93 = 32.11, p < 0.001), but in
contrast only these approaches showed significant differences
in the alpha relative power compared to the Outside rs-
EEG (F1.92,36.49 = 14.16, p < 0.001). The only method
in which fast beta relative power was different from the
Outside rs-EEG was ICA (F3.03,57.56 = 17.51, p < 0.001)
and for gamma relative power there were significant increases
observed in the ICA, OBS-ICA, and AAS-ICA approaches
(F2.69,51.17 = 62.02, p < 0.001). Once again, we found
very similar results when using the Inside rs-EEG data
(Supplementary Figure 4).

The analysis of the individual alpha peak frequency and
center of gravity revealed that, even with fewer electrodes with
sufficient quality for the estimation of these parameters in the
rs-EEG-fMRI condition (Supplementary Table 1), there were
no significant differences in the estimations of the alpha peak
frequency and center of gravity when comparing the corrected
(and uncorrected) rs-EEG-fMRI against the Outside rs-EEG
data (Supplementary Figure 5).

3.2 Eyes closure-opening
task–preservation of EEG functional
reactivity

We then focused on evaluating if EEG functional reactivity
to the EC-EO task could be preserved after BCG artifact
removal. Figure 5 shows the group average power spectrum
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FIGURE 2

Percentage change (colorbar) in the absolute power of each frequency band of the rs-EEG-fMRI data before and after BCG artifact removal,
relative to the Outside rs-EEG. Each matrix shows all electrodes (rows) for each subject (columns). A negative percentage indicates lower
absolute power in the rs-EEG-fMRI compared to the outside rs-EEG. ICA-based corrections performed better in reducing the BCG artifact
contribution and preserving the rs-EEG-fMRI spectral profile (especially for delta, theta, and alpha bands), though artifact residuals and/or
absolute power decreases were evident for most subjects, across all frequency bands.

from the O1 electrode, obtained from the EEG signals
collected during the eyes-closed (green) and eyes-open (red)
conditions. For the Outside EEG EC-EO spectrum, a clear
distinction between the two physiological states is observed as

a higher-amplitude alpha power peak in the absolute power EC
EEG spectrum, compared to the EO spectrum. This difference
is completely masked by the BCG artifact. Although the
difference between the two conditions was never as evident
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FIGURE 3

Results of the repeated measures ANOVAs comparing the average absolute power of all electrodes from all subjects between the Outside
rs-EEG and the rs-EEG-fMRI data corrected using each of the seven BCG correction methods. Each frequency band was analyzed separately.
The asterisks indicate significant statistical differences (padj < 0.05) between the corrected rs-EEG-fMRI and the Outside rs-EEG data. A
generalized increase in absolute power across all frequency bands was observed for the data recorded simultaneously with fMRI, which
remained significant after applying all BCG correction methods. Note that PROJIC-AAS and PROJIC-OBS were abbreviated as P-AAS and
P-OBS, respectively.

FIGURE 4

Results of the repeated measures ANOVAs comparing the average relative power of all electrodes from all subjects between the Outside rs-EEG
and the rs-EEG-fMRI data corrected using each of the seven BCG correction methods. Each frequency band was analyzed separately. The
asterisks indicate significant statistical differences (padj < 0.05) between the corrected rs-EEG-fMRI and the Outside rs-EEG data. Relative power
was altered across all frequency bands for the data recorded simultaneously with fMRI. Some correction approaches rescued relative power for
some frequency bands, but the overall spectral power profile remained altered across all BCG correction methods. Note that PROJIC-AAS and
PROJIC-OBS were abbreviated as P-AAS and P-OBS, respectively.

as for the Outside EEG EC-EO data, the use of ICA, or the
combination of OBS-ICA and AAS-ICA allowed to partially
retrieve the difference between EC and EO states. The number

of components removed per each method (mean; SD; range) was
9.6; 1.3; 8–11 for ICA, 6.7; 1.4; 4–10 for OBS-ICA and 5.8; 1.2;
4–8 for AAS-ICA. The rest of the correction approaches failed
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FIGURE 5

Group average power spectrum (with standard deviation) of the O1 electrode during the eyes-closed (EC; green) and eyes-open (EO; red)
conditions of the EC-EO task. A comparison is shown between the spectra obtained from the Outside EEG EC-EO and the EEG-fMRI EC-EO
data, before and after removing the BCG artifact with each correction method. ICA-based approaches performed better in retrieving the
difference between EC and EO conditions (reflected as higher alpha power for the EC condition), though the difference was still attenuated
when compared to the data acquired outside the scanner.

to retrieve a clear distinction in the alpha band between the two
conditions.

This was confirmed by the statistical analysis shown in
Figure 6, comparing the ratio obtained from dividing the
alpha power of the EC condition by the alpha power of the
EO condition. BCG artifact residuals resulted in a significant
decrease in the alpha power ratio for all correction methods
(F2.77,38.75 = 35.52, p = > 0.001). The only approach that
allowed to retrieve an EC-EO power ratio that was not
statistically different from the Outside EEG EC-EO data was
the ICA feature extraction of the alpha power, indicating this
strategy retrieved the functional reactivity of posterior alpha
oscillations (Figure 6). The number of retained ICs related to
alpha activity for the ICA feature extraction approach (mean;
SD; range) was 2.1; 0.6; 1–3.

3.3 EEG-informed fMRI–impact of BCG
artifact residuals on multimodal
analysis

To evaluate if the BCG artifact biased multimodal data
analysis results, we performed EEG-informed fMRI analysis
using alpha power fluctuations derived from the EEG-fMRI
EC-EO condition to generate the BOLD signal predictors.
EEG predictors were obtained from the same EEG-fMRI EC-
EO signals corrected with one of the eight approaches (AAS,
OBS, ICA, OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-ICA,
and IFE). The results were compared to those obtained with
conventional fMRI analysis, using the task design to build
the hemodynamic response model (positive contrast). Figure 7
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FIGURE 6

Results of the repeated measures ANOVAs comparing the eyes closure-opening (EC-EO) alpha power ratio calculated from O1 and O2
electrodes for the Outside EEG EC-EO and the EEG-fMRI EC-EO signals corrected with each BCG approach or Independent component
analysis Feature Extraction (IFE). The asterisks indicate significant statistical differences (padj < 0.05) between the EEG-fMRI EC-EO and the
Outside EEG EC-EO data. IFE was the only method that did not show significant differences in the EC-EO alpha power ratio when compared to
the data recorded outside the scanner. Note that PROJIC-AAS and PROJIC-OBS were abbreviated as P-AAS and P-OBS, respectively.

displays the statistical parametric maps obtained using the task
design and each of the EEG-derived predictors. As expected,
in the task design predictor maps we observed BOLD signal
increases during the EO condition and decreases during the EC
condition within occipital and parietal cortices. BOLD signal
changes were accurately predicted by EEG signals, as observed
in the maps from the EEG-derived predictor generated after
using IFE to extract alpha power fluctuations. Importantly, BCG
residuals/signal loss that remained after implementing all the
tested BCG correction approaches biased the results of the EEG-
informed fMRI analysis, obscuring the associations between
alpha power and BOLD signal fluctuations.

4 Discussion

In this study we aimed to characterize the impact of
the BCG artifact on spontaneous EEG spectral power and to
compare some of the most popular available BCG correction
approaches. Our main focus was to assess the preservation of
resting-state EEG spectral properties by statistically comparing
the absolute and relative power changes in the EEG data
simultaneously acquired with fMRI (corrected with different
methods) with respect to the uncorrected data and the
data obtained outside of the MR environment. We further
investigated whether the functional information from EEG
spectral power could be retrieved regardless of the presence of
BCG artifact residuals, by evaluating the alpha power reactivity
to an EC-EO task. Finally, we wanted to assess how the selection
of the BCG artifact correction method influenced the results
from EEG-informed fMRI analysis. Although several studies
have previously compared different BCG correction methods to

assess artifact reduction and signal preservation (Debener et al.,
2006; Vanderperren et al., 2010; Marino et al., 2018; Bullock
et al., 2021), ours is one of the few studies that: (1) Focus on
the preservation of spontaneous brain oscillations rather than
ERPs, (2) Characterize the impact of BCG artifact removal using
seven state-of-the-art methods by using a specific task paradigm
to test the functional reactivity of a particular spontaneous brain
rhythm (alpha oscillations), and (3) Provide a direct side-by-
side comparison of the impact of using different BCG correction
approaches prior to multimodal EEG-informed fMRI analysis.

The uncorrected rs-EEG-fMRI showed a marked increase in
absolute power across all frequency bands, more pronounced
within the theta and slow beta bands. Relative power was
also severely distorted, making uncorrected EEG signals
unusable for any analysis purposes. We found that, even
though a clear reduction of the artifact was observed on
the power spectra of our rs-EEG-fMRI data, none of the
BCG artifact removal approaches tested (AAS, OBS, ICA,
OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-OBS) entirely
preserved the spectral profile of EEG signals, due to both
artifact residuals and induced EEG signal losses. Overall, in
line with previous reports (Srivastava et al., 2005; Debener
et al., 2006; Mayeli et al., 2021), we found better results
with ICA-based approaches, especially when used after AAS
or OBS, as compared to the conventional AAS and OBS
and PROJIC approaches. Additionally, large variability in the
artifact correction outcomes was observed, with some subjects
even showing decreased absolute power compared to their
outside rs-EEG, which may be reflecting EEG signal losses
after the artifact correction procedure (Ullsperger and Debener,
2010; Marino et al., 2018). To our surprise, the estimation
of the individual alpha peak frequency and center of gravity
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FIGURE 7

Corrected threshold-free cluster enhancement voxel-wise group-level statistical maps obtained from the EC-EO task fMRI data analysis (n = 15)
using either the task design or the EEG alpha power fluctuations to generate the blood-oxygen level-dependent (BOLD) signal predictors used
in the general linear model. For the conventional fMRI analysis (task design), the map shows the voxels that displayed a positive association with
the model (higher BOLD signal in EO vs. EC conditions). For the EEG-informed fMRI analyses, the maps show the voxels where the BOLD signal
exhibited a significant negative association with the EEG alpha power derived BOLD signal predictor. A comparison is shown between the maps
obtained using the predictors derived from the same EEG signals, corrected using each BCG correction method or IFE. Only IFE preserved the
negative relationship between alpha power fluctuations and the BOLD signal, providing very similar maps to those obtained from the
conventional fMRI analysis. The color scale shows the 1-p statistical values with a threshold set at p < 001.

were preserved even in the uncorrected rs-EEG-fMRI data,
suggesting that such features can be successfully extracted
from EEG data recorded inside the MR environment. We
replicated this finding on the Inside rs-EEG data, supporting
the robustness of this approach (Klimesch et al., 1990;
Corcoran et al., 2018) and suggesting that these features
may be extracted from simultaneous EEG-fMRI studies,
and could potentially be used as features for integrative
analysis.

The severe distortions observed in the absolute and relative
spectral power highlight the huge impact BCG artifact residuals
have on the resting-state EEG signals and demonstrate that
artifact residuals remain after applying all the tested BCG
correction methods, impairing the preservation of spontaneous
EEG signal properties, as opposed to what is observed in
event related potential studies (Debener et al., 2006; Assecondi
et al., 2010; Vanderperren et al., 2010). We were also interested
in investigating if, despite the generalized distortions of the
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power spectrum, functional information from task-reactive
spontaneous EEG signals could be retrieved. We selected our
task considering that alpha power reactivity to eyes closure-
opening is one of the most robust phenomena observed in
human EEG (Berger, 1929; Adrian and Matthews, 1934; Barry
and De Blasio, 2017) and that it is the most commonly
used paradigm on simultaneous EEG-fMRI resting-state studies
(Goldman et al., 2002; Moosmann et al., 2003; Munck and
Maurits, 2006; de Munck et al., 2007). We found that the
occipital alpha rhythm reactivity to the EC-EO task was
retrieved when using IFE and, to a lesser extent, with the
OBS-ICA, and AAS-ICA–based corrections. However, neither
the AAS, OBS, ICA or the PROJIC-AAS and PROJIC-OBS
approaches preserved a clear distinction between EC and EO
states.

Considering the potential implications of our findings, we
then evaluated how the choice of the BCG correction method
impacted the generation of EEG alpha power derived BOLD
signal predictors used for EEG-informed fMRI analysis. Only
the data processed using IFE of the alpha rhythm showed a clear
significant inverse relation between alpha power and the BOLD
signal from the occipital and parietal cortices, yielding similar
statistical parametric maps to those obtained with conventional
fMRI analysis (Figure 7), and those reported in previous alpha
power EEG-informed fMRI studies (Goldman et al., 2002;
Laufs et al., 2003; Moosmann et al., 2003; de Munck et al.,
2007). None of the seven BCG removal methods tested here
allowed to preserve the EEG alpha fluctuations to the same
extent, and no statistical associations with the BOLD signal
were observed in the EEG-informed fMRI analysis. These results
provide compelling evidence that BCG artifact residuals and/or
EEG signal losses related to the artifact removal procedure
severely impair data quality and mask the functional association
between EEG alpha power and occipito-parietal BOLD signal,
hampering our interpretations from multimodal EEG-fMRI
integrative analyses (Goldman et al., 2002; Scrivener, 2021;
Warbrick, 2022).

Overall, our results demonstrate that state-of-the-art BCG
artifact correction approaches still have important limitations.
Our work highlights the need for refining and standardizing
existing methods, and to develop novel approaches to deal
with the BCG artifact to fully benefit from the advantages
provided by simultaneous EEG-fMRI. We also highlight the
need to validate current and novel approaches by evaluating
the preservation of spontaneous EEG brain rhythms and their
impact on multimodal integrative analyses. We demonstrated
that IFE was effective to rescue the alpha rhythm reactivity to the
eyes closure-opening task, though future studies should design
specific paradigms to test the reactivity of other brain rhythms.

Regarding new software implementations, interesting
proposals have arisen among the EEG-fMRI community. Given
that the delay between the ECG and the BCG peak may vary
over time (Oh et al., 2014), the adaptative OBS method was

proposed to improve the results obtained with conventional
OBS, by adjusting the variable delay between the QRS peak
and the main BCG artifact peak (Marino et al., 2018). Another
set of promising alternatives are the machine learning-based
approaches that employ different data learning algorithms
to better identify and classify the BCG artifact (Abolghasemi
and Ferdowsi, 2015; McIntosh et al., 2021; Ebrahimzadeh
et al., 2022; Lin et al., 2022). Even with the development of
new signal processing tools that allow to better characterize
and correct the BCG artifact, it has become evident that the
solution for the BCG artifact problem must come not from
software but most likely from hardware-based approaches, that
incorporate additional elements or change the configuration
of the EEG-fMRI setup to measure and/or reduce the artifact
during data acquisition (Ullsperger and Debener, 2010; Jorge
et al., 2014; Ebrahimzadeh et al., 2022). Promising examples
include modified EEG caps containing a reference adapting
layer (Xia et al., 2014) or carbon-based wire loops (van der
Meer et al., 2016) that record electrode motion and use this
information to better model and subtract the BCG artifact
from the data, and also modifications in the materials for
electrodes and leads as well are their geometrical configuration
(Chowdhury et al., 2015; Assecondi et al., 2016).

Our study also contributes to the field by providing a
simple, easy-to-implement workflow to characterize the impact
of the BCG artifact and assess the efficiency of BCG artifact
removal methods to reduce the artifact and preserve EEG
spectral properties, which may be useful when attempting to
validate novel BCG artifact correction approaches in resting-
state EEG data or implementing an EEG-fMRI protocol in a new
facility. Also, by making our dataset available to the scientific
community we hope to incentivize other groups to participate in
EEG-fMRI research and take advantage of these data to explore
and validate novel BCG removal approaches, aiming to increase
the collective effort to solve this 30-year-old problem in the field
of simultaneous EEG-fMRI.

4.1 Study limitations

The present study has many strengths as it is one of the few
works characterizing the preservation of spectral properties of
resting-state EEG and EEG reactivity to a task after BCG artifact
correction, and its impact on multimodal EEG-informed fMRI
analysis. We carefully selected a sample of young healthy adults
to assess EEG data quality. Although the number of subjects was
relatively small (N = 20), it is much higher than many previous
studies assessing EEG data quality during simultaneous EEG-
fMRI experiments. Additionally, we validated and replicated
our main findings in the rs-EEG-fMRI data by also analyzing
the data recorded inside the scanner without fMRI acquisition.
Overall, we found very similar results, supporting the idea that
GA residuals do not influence our results from the EEG-fMRI
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data and showing that there was a consistent pattern between
the results obtained from two independent sets of data from the
same subjects, further supporting our conclusions.

Several limitations should also be considered. For practical
reasons, the outside-EEG was always recorded before the
inside-EEG and simultaneous EEG-fMRI for all subjects. Not
counterbalancing the conditions may bias EEG quantitative
measures if the subject’s mental state has changed due to
vigilance fluctuations or fatigue. However, given that in this
study the time between conditions was relatively short (around
15 min between outside and inside scanner EEG recordings)
we do not expect this to significantly affect our findings.
Additionally, only male subjects were included in this study,
which impacts the generalizability of our results and poses
the need of replicating these findings in a cohort of female
participants. Although we put great effort into matching the
experimental conditions across subjects, we also acknowledge
that our results may be influenced by the subject’s head position
relative to the B0 magnetic field and the amount of movement
during the recordings (Debener et al., 2008; Yan et al., 2010;
Mullinger et al., 2013b), both of which increase the within
and between-subject variability in the BCG artifact spectral
profile.

Inconsistent results as compared to other studies may be
attributed to differences in methodologies, such as the use of
low-impedance, conductive paste EEG caps in other studies
(Debener et al., 2008; Vanderperren et al., 2010; Mullinger
et al., 2013b; Arrubla et al., 2014), which may have some
advantages over high-impedance caps as the one used here, but
also differ in terms of the length and geometrical arrangement
of the EEG wires and placement of the EEG amplifier relative
to the B0 magnetic field (Chowdhury et al., 2015; Assecondi
et al., 2016). Our data also suggest that cardiac signal recording
using conventional ECG montages is not ideal for EEG-fMRI
studies, and therefore other measurements of cardiac activity (or
ideally scalp measurements of the BCG artifact itself) should
be used, given that low quality ECG data may result in a
poor estimation of the QRS-peak, which impacts the efficiency
of the BCG artifact correction process (Iannotti et al., 2014).
Another aspect to consider is that the parameter tunning for
each BCG correction approach may dramatically influence
the results. Both AAS and OBS were implemented using a
fixed delay between the QRS events and the BCG amplitude
peak (210 ms) which actually has been proved to be very
variable within and between individuals (Yan et al., 2010;
Marino et al., 2018). The number of principal components
used to implement the OBS-based correction approach was
kept constant for all subjects, while some studies have shown
that optimizing parameters for each subject improves the
results from the artifact correction process (Abreu et al., 2016;
Marino et al., 2018). The parameters used here were selected
to match the default options of the fMRIB toolbox, which
are also the parameters typically used in many EEG-fMRI

studies. We should therefore keep in mind that there may be
room for improving the artifact correction procedure by fine-
tuning these parameters (Marino et al., 2018). For ICA–based
corrections, the ICs corresponding to the BCG artifact were
manually selected. Although we used standard criteria to select
the artifact-related components this generates a potential bias,
and future studies should try using automatic or semi-automatic
independent component selection algorithms. It is also very
plausible that having a higher number of electrodes would
improve the spatial characterization of the artifact, facilitating
the selection of components and improving signal preservation.
The most recent PROJIC approaches (Abreu et al., 2016)
might significantly improve by adjusting different parameters
on an individual subject basis. Here we used the recommended
parameters across all individuals, and therefore this question
should be addressed in future studies.

Finally, we evaluated the preservation of EEG functional
properties only by focusing on posterior alpha power reactivity
to the EC-EO task. Although we demonstrated that ICA
feature extraction allowed to retrieve the associations between
alpha power and hemodynamic signals, future studies are
needed to evaluate if other spontaneous brain rhythms can
be preserved, especially considering that lower frequencies are
even more affected by the BCG artifact harmonic frequencies,
and that higher frequencies have a much lower amplitude
compared to the artifact waveforms. To tackle this question,
other study designs need to be implemented to evaluate the
reactivity of these particular rhythms (i.e., cognitive tasks,
spontaneous activity recording in other natural physiological
states such as sleep).

5 Conclusion

Overall, our study provides strong evidence that the most
commonly used BCG correction methods have important
limitations and were not able to entirely preserve the
spectral power features of resting-state eyes-closed EEG
activity (excepting for the individual alpha peak frequency
and center of gravity), nor the functional reactivity of
EEG signals to a simple EC-EO task, using this particular
EEG-fMRI setup. Importantly, the EEG signal distortions
compromised the results from integrative multimodal data
analysis, evidencing the imposed difficulty of reliably studying
the relationship between spontaneous electrophysiological
activity and hemodynamic brain responses without optimal
EEG data quality. ICA feature extraction allowed to preserve
EEG oscillations related to the EC-EO task and to obtain reliable
predictors for EEG-informed fMRI analysis. Future studies
assessing novel or adapted hardware and software strategies
to deal with the BCG artifact are needed and should be
validated by assessing the preservation of EEG signal properties
as the main concern.
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