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a b s t r a c t 

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis 

of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The 

richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate infor- 

mation across modalities and to consolidate findings across different spatial scales. Here, we present micapipe , 

an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can gen- 

erate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from 

resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) 

microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The 

above matrices can be automatically generated across established 18 cortical parcellations (100–1000 parcels), 

in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across 

different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), 

and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. mi- 

capipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe , documented 

at https://micapipe.readthedocs.io/ , and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/ . 

We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, 

function, cand connectivity. 
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. Introduction 

The human brain is a complex network organized across multiple

patial and temporal scales ( Betzel and Bassett, 2017 ). Neuroimaging,

nd in particular magnetic resonance imaging (MRI), provides versa-

ile contrasts sensitive to the brain’s microstructure, connectivity, and

unction, offering a window into its organization in living humans
∗ Corresponding authors at: Multimodal Imaging and Connectome Analysis Lab, Mc

ity, Montreal, Québec, Canada. 

E-mail addresses: raul.rodriguezcruces@mcgill.ca (R.R. Cruces), jessica.royer@ma
1 Co-first authors. 

t  

ttps://doi.org/10.1016/j.neuroimage.2022.119612 . 

eceived 23 February 2022; Received in revised form 20 August 2022; Accepted 3 Se

vailable online 5 September 2022. 

053-8119/© 2022 Published by Elsevier Inc. This is an open access article under th
 Turner, 2019 ; Larivière et al., 2019 ; van den Heuvel et al., 2019 ;

an Essen et al., 2013 ). 

Recent years have witnessed the rise of multiple neuroimaging data

cquisition efforts ( Gordon et al., 2017 ; Royer et al., 2021 ; Van Essen

t al., 2012 ) as well as initiatives for open data sharing to promote trans-

arency and reproducibility ( Milham et al., 2018 ). These initiatives of-

er researchers the ability to interrogate brain structure and function in

housands of individuals across multiple sites from around the world.
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n addition, a variety of tools and processing pipelines has previously

een developed. These include tools for the automated analysis of corti-

al/subcortical morphology based on T1-weighted MRI ( Fischl, 2012 ;

im et al., 2005 ; Patenaude et al., 2011 ), approaches for the anal-

sis of myelin-sensitive MRI contrasts to assess brain microstructure

 Paquola et al., 2019b ; Glasser and Van Essen, 2011 ; Waehnert et al.,

016 ), measurements of cortical geometry and proximity relationships

 Ecker et al., 2013 ; Hong et al., 2018 ; Paquola et al., 2020 ), the study

f intrinsic brain function and functional connectivity via resting-state

unctional MRI, rs-fMRI ( Biswal et al., 2010 ; Craddock et al., 2013 ;

steban et al., 2019 ), and analysis of structural connectivity inferred via

iffusion MRI tractography ( Cieslak et al., 2021 ; Daducci et al., 2012 ;

ournier et al., 2019 ; Cai et al., 2021 ; Theaud et al., 2020 ; Rheault et al.,

021 ). Individually, ongoing advances in MRI modelling approaches re-

ult in increasing biological validity ( Craddock et al., 2015 ; Jbabdi et al.,

007 ; Mars et al., 2021 ), promising to extend findings and theory from

lassical neuroanatomy in non-human animals to humans. Yet, most

ools developed to date generally focus on the processing of individual

odalities, or the combination of only few different modalities (e.g.,

1-weighted MRI and rs-fMRI). 

System neuroscience has increasingly benefitted from paradigms

hat combine different imaging modalities ( Paquola et al., 2020 ; Van den

euvel et al., 2019 ; Van den Heuvel and Yeo, 2017 ). For example, mul-

iple studies have begun to study brain function and functional connec-

ivity in surface-based anatomical reference frames ( Huntenburg et al.,

021 ; Tierney et al., 2013 ; Vos de Wael et al., 2018 ), and combined

hese assessments with diffusion MRI approaches ( Liu et al., 2016 ;

ong et al., 2019 ). Further work integrating structural and functional

euroimaging modalities has propelled interest in examining structure-

unction relationships in the human brain ( Huntenburg et al., 2018 ;

uárez et al., 2020 ; Benkarim et al., 2022 ; Paquola et al., 2019b ;

ázquez-Rodríguez et al., 2019 ). Furthermore, there has been signif-

cant development towards the identification of multimodal parcel-

ations ( Fan et al., 2016 ; Eickhoff et al., 2018 ; Genon et al., 2021 ,

018 ; Glasser et al., 2016 ) and large-scale gradients of brain orga-

ization ( Vos de Wael et al., 2020 , 2021 ; Margulies et al., 2016 ;

aquola et al., 2020 , 2019a , 2019b ; Valk et al., 2020 ; Müller et al.,

020 ; Tian et al., 2020 ). However, researchers interested in synergies

cross multiple modalities are often forced to develop custom-built im-

ge co-registration and data-integration procedures. 

To build upon existing MRI processing pipelines that are primarily

eared towards single modalities, we developed micapipe . The pipeline

ntegrates processing streams for structural MRI, rs-fMRI, diffusion-

eighted MRI, and myelin-sensitive MRI to automatically generate

odels of cortical geometry and microstructure, as well as struc-

ural and functional connectivity. Micapipe generates inter-regional ma-

rices across different spatial scales, incorporating multiple cortical

s well as subcortical/cerebellar parcellations ( Desikan et al., 2006 ;

estrieux et al., 2010 ; Scholtens et al., 2018 ; von Economo, 2009 ;

ischl, 2012 ; Vos de Wael et al., 2020 ; Schäfer et al., 2018 ; Glasser et al.,

016 ; Patenaude et al., 2011 ; Diedrichsen et al., 2009 ). In a nutshell, mi-

apipe transforms BIDS-conform MRI data ( Gorgolewski et al., 2017 ) to

rocess macroscale models of brain organization in an easy-to-analyze

ormat, with it being the only pipeline providing models of structural

onnectivity, functional connectivity, geodesic distance, and microstruc-

ural similarity within a unified tool. Easy-to-verify outputs and visual-

zations can be produced for quality control (QC). In addition to its code-

ase being openly available on GitHub ( http://github.com/MICA-MNI/

icapipe ), micapipe is also available as a Docker container, included as

 BIDS App, and is accompanied by detailed tutorials and an expandable

ocumentation ( http://micapipe.readthedocs.io ). 

. Results 

Micapipe has a modular workflow that can incorporate multiple

RI data modalities (T1-weighted MRI, myelin-sensitive MRI, diffusion-
2 
eighted MRI, and resting-state functional MRI), converting BIDS-

onform input into BIDS-conform surface, volume, and matrix data

 Fig. 1A ). The following sections describe key pipeline features, main

utputs, and automated quality control (QC) visualizations. We also per-

orm several validation experiments across a diverse range of datasets. 

.1. Pipeline workflow 

Processing modules of micapipe can be run individually or bundled

sing specific flags via a command-line interface. Multimodal integra-

ion relies strongly on the characterization of anatomy via T1-weighted

RI processing. Using volume- and surface-based processing streams,

he pipeline generates subcortical, cortical and cerebellar segmentations

n subject- and modality-specific spaces. Using structural imaging data,

n addition to other input modalities, inter-regional brain matrices can

e generated across 18 combinations of cortical, subcortical, and cere-

ellar parcellations. Inter-regional matrices are : (i) structural connec-

omes (SC) derived from diffusion tractography ( Smith et al., 2015a ),

 ii) functional connectomes (FC) derived from resting-state signal cor-

elations ( Biswal et al., 2010 ), ( iii) geodesic distance (GD) matrices

hat quantify cortico-cortical proximity using cortical surface models

 Ecker et al., 2013 ; Hong et al., 2018 ), and ( iv) microstructural pro-

le covariance (MPC) matrices that assess inter-regional similarity in

ntracortical intensity profiles from microstructurally-sensitive imaging

 Paquola et al., 2019b ). Surface-mapped features are made available

cross three surfaces ( Fig. 1B ): native, conte69 ( Van Essen et al., 2012 ),

nd fsaverage5 ( Fischl et al., 1999 ). Intermediary files and processed

erivatives and matrices conform to BIDS naming conventions ( Fig. 1C ),

acilitating future use and harmonization across datasets and software. 

.2. Quality control (QC) 

The QC module visualizes outputs at the individual and group levels

 Fig. 2A ). Reports detail completed processing steps, including image

egistrations, surface parcellations, and inter-regional feature matrices.

hey are organized by modality and parcellation. These reports help

sers to identify missing data, poor image quality, and faulty registra-

ions ( Fig. 2A ). Complementing subject-specific reports, group level QC

utomatically generates a report outlining completed and missing mod-

les for each subject facilitating use for large datasets ( Fig. 2B ). 

.3. Assessing output consistency within and between datasets 

We evaluated whether micapipe yields consistent results across 50

ndividuals of an openly available multimodal MRI dataset [MICA-MICs;

 Royer et al., 2021 ), and also compared processed outputs to those from

ix additional datasets (Table S1)]. 

We first assessed within-dataset consistency for each modality (GD,

C, FC, MPC) at three different granularities (Schäfer 100, 400 and

000 parcels) using five different metrics. We generated modality-

nd dataset-specific mean group matrices and computed consistency

cross the following features: the first eigenvector/gradient explain-

ng the most data variance (calculated via diffusion map embedding

 Coifman et al., 2006 )), the matrix edges, as well as node strength,

haracteristic path length, and clustering coefficient as three represen-

ative graph features [( Rubinov and Sporns, 2010 ), Fig. 3A ]. We cor-

elated subject-level and group-level metrics to quantify within-dataset

onsistency (Spearman’s rho, see Supplementary Fig. 5). Correlations

ere highest for GD and SC, followed by FC and MPC. Gradient 1 was

he most consistent measure across parcellations and modalities, fol-

owed by edges and node strength. Overall, characteristic path length

as similar at lower granularity (100 parcels) but increasingly dissimi-

ar at higher granularity (1000 parcels). Clustering coefficient had vari-

ble patterns depending on the modality and granularity ( Fig. 3 B,C).

articularly, GD showed the highest within-dataset similarity over all

atasets and measurements (rho range = 0.89–0.99), followed closely

http://github.com/MICA-MNI/micapipe
http://micapipe.readthedocs.io
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Fig. 1. ( A ) Pipeline workflow. B ) Outputs can be generated across 18 different cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar 

parcellations. Most results are mapped to three different surface spaces: native, conte69 and fsaverage5. C ) Outputs are hierarchically ordered with BIDS-conform 

naming. 
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y SC in gradient 1, edges, and strength (rho range = 0.75–0.98). SC-

erived characteristic path length was increasingly dissimilar at high

ranularity, whereas clustering coefficient had a peak of similarity at

00 parcels in all datasets (rho range = 0.6–0.78), and low similarity

t 100 and 1000 parcels. FC gradient 1 similarity was consistent for all

ranularities and datasets (rho = 81.3 ± 5.7, mean ± sd), with a slight

ecrease at higher granularity. Edges and strength from FC had a good

evel of similarity (rho range = 0.68–0.79), with highest values observed

n the Midnight scan club dataset, which notably had the highest reso-

ution of rest-fMRI. MPC derived measurement showed lower similarity

t higher granularities. Characteristic path length and clustering coeffi-

ient derived from MPC had a poor-to-fair within group similarity (rho

ange = 0.15–0.64), likely due to the topology of these matrices. Find-

ngs were consistent across datasets, and higher intra-group similarity

robably reflected higher resolution of the MRI acquisitions (e.g., MICs

nd MSC). 

We also compared the consistency of each measurement between

atasets ( Fig. 4 ). As for the within-dataset analysis, we found the high-

st similarities for GD and SC, followed by FC and MPC. GD, SC and FC

howed high similarity between datasets for the edges, first eigenvec-

or/gradient, and node strength. MPC had the lowest between dataset

onsistency for all measurements, except for the comparison between

piC and EpiC longitudinal, and MICs and MSC, whose values were

ostly high except in the MPC clustering coefficient. Particularly, we

bserved high similarity between GD-derived metrics across all datasets.

C consistency between datasets was also high for most measurements,

radient 1 being the most similar, followed by the edges. The graph
3 
eatures derived from SC had good consistency but more variability be-

ween datasets. FC had decreased consistency between datasets for char-

cteristic path length and clustering coefficient, compared to the good

onsistency for gradient 1 and edges. It should be noted that the high-

st consistency for FC across all measurements was between EpiC and

piC longitudinal, likely because both datasets had similar acquisition

arameters and included an overlapping subject sample. 

.4. Assessing test ‐retest similarity 

We assessed the test-retest reproducibility, using 53 subjects two ac-

uisitions each from the Human Connectome Project, adopting a pre-

iously published framework ( Seguin et al., 2022 ). Here, we generated

imilarity matrices between all pairs of subjects (subject-test by subject-

etest) for each modality. From each similarity matrix, we computed

hree metrics: reliability, uniformity, and identifiability ( Fig. 5 A). The

iagonal of the similarity represents the intra-individual similarity i.e.,

eliability when processing two acquisitions of the same subject. The

niformity or inter-individual similarity (triangular matrix) quantifies

he mean similarity of matrices belonging to different individuals within

 given dataset. Identifiability measures the extent to which matrices

f the same individuals are differentiable from the rest of the group.

deally, the processed matrices should be reliable (i.e., high reliabil-

ty) and preserve inter-individual differences (i.e., low uniformity). For

ll feature matrices of each modality and three different parcellations

 Fig. 5 B), we found reliability exceeding uniformity, leading to high

dentifiability. GD and SC had excellent reliability (Similarity > 0.9), fol-
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Fig. 2. ( A ) Individual level quality control (QC), which can be run at any point during the processing. The QC procedure will generate a html report file for each 

subject containing visualizations of intermediate files for volume visualization, cross-modal co-registrations, and surface parcellations. Moreover, it allows inspection 

of inter-regional matrices such as the structural connectome (from diffusion MRI tractography), the functional connectome (from resting-state fMRI signal correlation), 

the microstructural profile covariance matrix (from correlations of intracortical microstructural profiles), and geodesic distance matrices. ( B ) QC can also be run at a 

group/dataset-level. The report consists of a color-coded table with rows as subjects and columns as the pipeline modules ( blue: completed, orange : incomplete/error, 

dark gray : not processed). 
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owed by FC and MPC, which decreased at higher granularity. Unifor-

ity also decreased at high granularity for all modalities except GD. On

he other hand, identifiability increased at higher granularities except

or GD ( Fig. 5 A-left). 

.5. Performance 

We tested micapipe on seven different databases acquired using dif-

erent MRI sequence/parameter combinations (Table S1 ). Processing

imes varied depending on the image resolution, the need to addition-

lly process data using FreeSurfer, the number of streamlines selected

or the structural connectome generation, and the type of acquisitions

er dataset (Table S2 ). Processing was performed on the Brain Imaging

enter (BIC) cluster of the Montreal Neurological Institute and Hospital

n Ubuntu 18.04.5 LTS version workstations. A maximum virtual mem-

ry of 6GB, with 6–10 CPU cores, and 20 GB of RAM were required.

utput size depended on image resolution and the length of the rs-fMRI

cquisitions (Table S3). 

.6. Data and code availability statement 

An expandable documentation at https://micapipe.readthedocs.io

escribes installation, usage, pipeline steps, updates, extra features, and

rovides a series of ready-to-use tutorials. All code can be found at https:

/github.com/MICA-MNI/micapipe , and is published under the Gen-

ral Public License 3.0. Micapipe is delivered as a docker container via
4 
IDS-App [ http://bids-apps.neuroimaging.io/apps/ ( Gorgolewski et al.,

017 )], and available on ReproNim [ https://github.com/ReproNim/

ontainers ( Halchenko et al., 2021 )]. Detailed steps to use the Docker

ontainer and to build a corresponding singularity container are avail-

ble under the readthedocs documentation. Code for figures and tables

an be found in the micapipe-supplementary GitHub repository ( https:

/github.com/MICA- MNI/micapipe- supplementary ) . 

. Discussion 

We present micapipe, an open software package to integrate and

rocess raw multimodal MRI data into multiple measures of structural

nd functional human brain network organization. As a standalone

IDS App, micapipe inputs and outputs BIDS-conform MRI data. Its out-

uts consist of derivative features across multiple parcellations, avail-

ble in both surface- and volume-based reference spaces. Notably, mi-

apipe outputs include regional measures of e.g., brain morphology, mi-

rostructure, and function together with inter-regional matrices encod-

ng ( i) cortico-cortical spatial proximity (based on geodesic distance

nalysis along cortical surfaces derived from T1-weighted MRI), ( ii) mi-

rostructural similarity (derived from intracortical profile covariance

nalysis of myelin-sensitive MRI), ( iii) i ntrinsic functional connectivity

obtained from rs-fMRI signal correlations), and iv) structural connec-

ivity (estimated from diffusion MRI tractography). Derivative features

re available across in surface-, volume-, and parcellation-based refer-

nce spaces, incorporating up to 18 different cortical as well as sub-

https://micapipe.readthedocs.io
https://github.com/MICA-MNI/micapipe
http://bids-apps.neuroimaging.io/apps/
https://github.com/ReproNim/containers
https://github.com/MICA-MNI/micapipe-supplementary
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Fig. 3. Within dataset mean consistency, indicating the correlation between subject- and group-level measurements (Spearman’s rho), for Schaefer-100, Schaefer- 

400, and Schaefer-1000 parcellations. ( A ) For each modality, five measurements were evaluated: principal gradient, edges, node strength, path length, and clustering 

coefficient. Empty rows indicate modalities that were not analyzed due to missing acquisitions. ( B,C ) Across datasets, correlations were highest for GD and SC, followed 

by FC and MPC. Gradient 1 was the most consistent measure across parcellations and modalities, followed by edges and node strength. Overall, characteristic path 

length was similar at lower granularity (100 parcels) but increasingly dissimilar at higher granularity (1000 parcels). Clustering coefficient had variable patterns 

depending on the modality and granularity. MPC: microstructural profile covariance, FC: functional connectivity, SC structural connectivity, GD geodesic distance. 
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ortical/cerebellar parcellations. micapipe furthermore offers advanced

unctionalities for individual and group-level quality control and visu-

lization of intermediary as well as final outputs. The pipeline has been

alidated across multiple datasets. As a unified tool to fuse and analyze

ultimodal neuroimaging data, micapipe offers neuroscientists a work-

ow to robustly probe human brain organization across multiple scales.

A range of pipelines have previously been developed to process MRI

mages from specific modalities, including tools for the generation of

ortical and subcortical segmentations based on T1-weighted MRI data
5 
 Das et al., 2009 ; Fischl, 2012 ; Kim et al., 2005 ), pipelines to pro-

ess functional MRI data ( Craddock et al., 2013 ; Esteban et al., 2019 ),

s well as tools for diffusion MRI data handling ( Cieslak et al., 2021 ;

enkinson et al., 2012 ; Tournier et al., 2019 ). Several workflows have

urthermore been developed for connectome mapping ( Daducci et al.,

012 ; Whitfield-Gabrieli and Nieto-Castanon, 2012 ), which allow users

o examine structural and functional network architecture in a system-

tic manner. Building upon these developments, micapipe offers a uni-

ed framework for multimodal fusion and data processing. As such, it is
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Fig. 4. We assessed consistency of matrix parameters across datasets using Spearman’s rho correlation coefficient for the same features as in Fig. 3 A. Each column 

represents the different modality matrices: (A) geodesic distance, (B) structural connectome, (C) functional connectome, and (D) microstructural profile covariance. 

The diagonal shows the mean value plotted on the surface of each dataset by measurement. As for the within-dataset analysis, we found the highest similarities 

between datasets for GD and SC, followed by FC and MPC. GD, SC, and FC showed high similarity between datasets for the edges, first eigenvector/gradient, and node 

strength. FC had decreased consistency between datasets for characteristic path length and clustering coefficient. MPC had the lowest between dataset consistency 

for all measurements. Empty matrix entries (coloured in white) indicate missing data for a given dataset. 
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imilar in scope to the Connectome Mapper tool ( Daducci et al., 2012 ),

lthough with notable differences. In particular, micapipe incorporates a

tream for the surface-based mapping of intracortical myelin proxies and

or the generation of microstructural profile covariance ( Paquola et al.,

019b ). A growing body of literature emphasizes the utility of myelin-

ensitive MRI analysis for cortical parcellation ( Carey et al., 2018 ;
6 
lasser and Van Essen, 2011 ; Granberg et al., 2017 ), to assess brain

nd cognitive development ( Deoni et al., 2012 ; Whitaker et al., 2016 ;

ebel and Deoni, 2018 ; Paquola et al., 2019a ), and to interrogate mi-

rostructural imbalances in common brain disorders ( Cooper et al.,

019 ; Du et al., 2019 ; Bernhardt et al., 2018 ; Larivière et al., 2019 ).

ecent work has shown that the analysis of covariance patterns of intra-
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Fig. 5. We assessed the capability of micapipe to generate reproducible outcomes in a test-retest scenario, adoping a prior framework ( Seguin et al., 2022 ). For 

all modalities and three parcellations, we evaluated the similarity between matrices of two different acquisitions (53 subjects from HCP, run-1 and run-2 scans). 

( A ) From each similarity matrix of subject-test by subject-retest, we computed three measures of similarity: reliability (intra-subject), uniformity (inter-subject), 

and identifiability (effect size between intra- and inter-). Reliability quantifies the mean processing consistency for an individual; uniformity quantifies the mean 

conformity of matrices belonging to different individuals, and identifiability quantifies how an individual can be recognized from a group based on the matrix 

features. The scatter plots with lines show the mean values of each similarity measure for each modality over three granularities (Schaefer-100, 400 and 1000). 

( B ) Similarity matrices for each modality and granularity. ( C ) Density plots of the reliability and uniformity by modality and granularity of all subject pairs. For all 

feature matrices, we found higher reliability than uniformity, with excellent performance for GD and SC, and good results for FC and MPC. Overall, less granular 

parcellation data had higher similarity than more granular parcellation data across all modalities. GD = geodesic distance, SC = structural connectome, FC = functional 

connectome, and MPC = microstructural profile covariance. 
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V  
ortical microstructural profiles can generate new descriptions of large-

cale network organization ( Paquola et al., 2020 ; Royer et al., 2020 ).

hese networks appear primarily governed by systematic shifts in lami-

ar differentiation and neuronal density, showing a principal organiza-

ional axes similar to those at the level of cytoarchitecture and intrin-

ic functional connectivity ( Margulies et al., 2016 ; Paquola et al., 2021 ,

019b ). A further feature is the automated generation of cortico-cortical

eodesic distance matrices, which indexes proximity between different

egions on the folded cortical surface. Cortico-cortical geodesic distance
7 
as been suggested to relate to intrinsic, horizontal connectivity within

he cortical ribbon as well as to cortical wiring cost ( Ecker et al., 2013 ;

ong et al., 2018 ; Paquola et al., 2020 ). Moreover, several investigations

nto principles of macroscale brain organization have emphasized that

he brain is a physically embedded network, and that thus inter-regional

istance relationships may help in the understanding of the topographic

ayout of functional systems and the connections formed between them

 Betzel et al., 2016 ; Betzel and Bassett, 2018 ; Margulies et al., 2016 ;

alk et al., 2020 ; Wang et al., 2022 ; Smallwood et al., 2021 ). As such,
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istance measures can be assessed as a feature of interest but also as an

ntrinsic variable one wants to control connectome analyses for in some

ituations. 

A series of evaluations assessed consistency of micapipe outputs,

tudying data from 455 individuals across seven datasets. Our evalua-

ions focused on the consistency of inter-regional matrix edges, the first

igenvector (gradient), and three widely used graph theoretical mea-

urements (node strength, characteristic path length, clustering coeffi-

ient) for up to four matrix modalities ( i.e., geodesic distance, functional

onnectivity, structural connectivity, microstructural covariance). Al-

ogether, our results indicate a generally high consistency of the first

radient across datasets, with some variations across modalities. For

xample, geodesic distance and structural connectivity gradients were

arkedly consistent (r > 0.95), followed by functional connectivity and

icrostructural profile covariance. It is likely that functional connec-

ivity measures and associated gradients may, in part, be influenced by

tate-to-state variations compared to the more static measures of struc-

ural connectivity and geodesic distance, likely in addition to data acqui-

ition related effects. Edges and graph derived measurements followed

n analogous pattern of consistency. With respect to the relatively low

tability of microstructural profile covariance, one needs to highlight

hat the included datasets varied in terms of microstructurally sensitive

RI contrasts, featuring T1-weighted/T2w intensity ratio ( Glasser and

an Essen, 2011 ), quantitative T1 relaxometry ( Royer et al., 2021 ), as

ell as magnetization transfer imaging ( Shafto et al., 2014 ). While these

equences are all thought to be sensitive to intracortical myelin content,

heir individual biophysical specificity remains to be established in fu-

ure work. 

Through the successful integration of several processing tools, mi-

apipe provides multiple ready to use inter-regional feature matrices,

.e., structural connectomes, functional connectomes, microstructural

ovariance, and geodesic distance, together with QC procedures. Our

ipeline is supported by a growing ecosystem of open tools for data

nd code sharing, notably Github, readthedocs, Docker, BIDS Apps

 Gorgolewski et al., 2017 ), and repronim/datalad ( Robert et al., 2016 ).

y making micapipe openly accessible as well, we hope that it will be

eneficial for future studies on human brain organization. 

. Materials and methods 

Micapipe runs modular processing streams on BIDS-conform raw T1-

eighted, microstructure-sensitive, diffusion-weighted , and resting-state func-

ional MRI data to generate fully processed surface/volume features as

ell as inter-regional feature matrices. A documentation with detailed

escriptions on the installation, implementation, as well as usage exam-

les and output files are available at https://micapipe.readthedocs.io/ . 

.1. Workflow and main processing modules 

Micapipe requires the input dataset to be formatted in BIDS

 Gorgolewski et al., 2016 ). 

.1.1. Structural processing 

Structural processing operates on T1-weighted images. The struc-

ural processing workflow can perform volumetric (with command-

ine option: -proc_structural ) and surface-based (-proc_freesurfer, -

ost_structural, -GD, -Morphology ) processing. The workflow registers

ubject data to volumetric and surface-templates providing several use-

ul structural metrics for further analyses. These include geodesic dis-

ance matrices ( -GD ) mapped to multiple parcellation schemes as well

s vertex-wise cortical thickness and curvature data ( -Morphology ).

he structural workflow includes tools from AFNI ( Cox, 1996 ),

SL ( Jenkinson et al., 2012 ), ANTs ( Avants et al., 2011 ), Mrtrix3

 Tournier et al., 2019 ) and FreeSurfer ( Fischl, 2012 ). Further informa-

ion about the usage and outputs is found in the structural processing

ection in the online documentation. 
8 
roc_structural. Initial structural pre-processing (i.e., -proc_structural)

eeps all data in volumetric format and generates a T1-weighted image

n native processing space (nativepro, Fig. S1A). Each T1-weighted run is

eoriented to LPI orientation ( i.e., left-right, posterior-anterior, inferior-

uperior), de-obliqued, and oriented to standard space (MNI152). If mul-

iple T1-weighted scans are found in the raw data, they are linearly

ligned to the first run and averaged. Next, the average image is cor-

ected for intensity nonuniformity (N4, Tustison et al., 2010 ) and in-

ensity is normalized between 0 and 100. The resulting image is named

1nativepro, which stands for T1 -weighted in native pro cessing space.

1nativepro is skull-stripped, subcortical structures are segmented us-

ng FSL FIRST ( Patenaude et al., 2011 ), and tissue types are classi-

ed (gray matter, white matter, CSF) using FSL FAST ( Zhang et al.,

001 ). A non-linear registration to MNI152 (0.8mm and 2mm resolu-

ions) is calculated ( Tustison and Avants, 2013 ) and a five-tissue-type

5TT) image segmentation is generated for anatomically constrained

ractography. 

roc_freesurfer. Cortical surface segmentations are generated from na-

ive T1-weighted scans using FreeSurfer 6.0 ( Fischl, 2012 ) and ordered

nder the FreeSurfer directory, following BIDS naming conventions. We

rovide an option for datasets that have already been quality controlled

o easily integrate the results within the pipeline’s directory structure

nd an option to process with voxel sizes less than 1mm 

3 at native

esolution ( -hires ). We recommend that users carefully inspect and, if

eeded, manually correct FreeSurfer-generated cortical surface segmen-

ations. As micapipe relies heavily on surface-based processing, poor seg-

entation quality may compromise downstream results. 

ost_structural. The first step of the post structural processing is to cal-

ulate an affine registration from native FreeSurfer space to T1nativepro

pace. It then registers a probabilistic cerebellar atlas ( Diedrichsen et al.,

009 ) from MNI152 to the subject’s T1nativepro space using affine and

on-linear transformations previously computed in the -proc_structural

odule. Next, a surface-based registration of fsaverage5 annotation la-

els to native surface is performed, and the surface-based parcellation

n native FreeSurfer space is transformed into a volume. Finally, the

ransformation matrices are applied to bring each volumetric parcella-

ion from native FreeSurfer space to T1nativepro space. In the last step

f this module, the pipeline builds a conte69-32k sphere and resamples

hite, pial and midthickness native surfaces to the conte69-32k tem-

late. 

The -post_structural module registers native FreeSurfer-space cortical

urfaces to two different standard templates (fsaverage5 and conte69),

n addition to mapping all cortical parcellation schemes to the sub-

ect’s native surface space and volumetric T1nativepro space (Fig. S1B).

icapipe provides a total of 18 cortical, subcortical and cerebellar

arcellations at different resolutions according to anatomical, cytoar-

hitectural, intrinsic functional, and multimodal schemes, at different

esolutions. Anatomical atlases available in micapipe include Desikan-

illiany (aparc, Desikan et al., 2006 ) and Destrieux (aparc.a2009s,

estrieux et al., 2010 ) parcellations provided by FreeSurfer, as well as

n in vivo approximation of the cytoarchitectonic parcellation studies of

on Economo and Koskinas ( Scholtens et al., 2018 ). Additionally, we

nclude similarly sized sub-parcellations, constrained within the bound-

ries of the Desikan-Killiany atlas, providing matrices with 100, 200,

00, and 400 cortical parcels following major sulco-gyral landmarks

 Fischl, 2012 ; Vos de Wael et al., 2020 ). Parcellations based on intrin-

ic functional activity are also included across several granularities (100,

00, 300, 400, 500, 600, 700, 800, 900, and 1000 nodes, ( Schäfer et al.,

018 ). Lastly, we also provide a multimodal atlas with 360 nodes de-

ived from the Human Connectome Project dataset ( Glasser et al., 2016 ).

ll atlases are provided on Conte69 and fsaverage5 surface templates,

nd on each participant’s native surface to generate modality-specific

atrices in subsequent modules. 

https://micapipe.readthedocs.io/
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orphology. This module registers cortical thickness and curvature

easurements to two distinct templates. Both surface-based morpho-

ogical features are registered to fsaverage5 and conte69 and smoothed

ith a gaussian filter with full width half maximum of 10mm. 

D: geodesic distance. Individual GD matrices are computed along

ach participant’s native cortical midsurface using workbench tools

 Marcus et al., 2011 ). First, a centroid vertex is defined for each cor-

ical parcel by identifying the vertex with the shortest summed Eu-

lidean distance from all other vertices within its assigned parcel.

hen, the geodesic distance is calculated from the centroid vertex to

ll other vertices on the midthickness mesh using Dijkstra’s algorithm

 Dijkstra, 1959 ). Notably, this implementation computes distances not

nly across vertices sharing a direct connection, but also across pairs

f triangles which share an edge in order, thus mitigating the impact

f mesh configuration on calculated distances. Vertex-wise GD values

ere averaged within parcels to improve computation performance. 

.1.2. Diffusion ‐weighted imaging processing 

This section describes all DWI-related processing steps implemented

n micapipe , which heavily rely on tools from MRtrix3 ( Tournier et al.,

019 ). This includes image processing preparation for the construction

f tractography-based structural connectivity matrices, as well as asso-

iated edge length matrices, all in native DWI space (Fig. S1C). Micapipe

WI processing has been optimized for multi-shell DWI but can also

andle single-shell data. Geometric and inhomogeneity corrections are

erformed in datasets that contain one or more reverse phase encoding

WI. It is a mandatory requirement that all DWIs have associated bvec,

val and json files, with encoded phase direction and total readout time.

roc_dwi. This module processes DWI scans, and derives several poten-

ially useful metrics (e.g., fractional anisotropy, mean diffusivity, Fig.

1C). First, if there is more than one set of DWI scans in the BIDS

irectory, they can optionally be aligned to each other using a rigid-

ody registration, and concatenated. All DWI images are then converted

o Mrtrix Imaging format (mif), which encodes the bvec, bval, phase

ncoding direction and total readout time (also adjusting bvec infor-

ation for potential transformations that were applied to the shells).

oncatenated DWI images undergo denoising by estimating data re-

undancy in the PCA domain via a Marchenko-Pasteur approach [MP-

CA, ( Veraart et al., 2016 ; Cordero-Grande et al., 2019 )]. Then, Gibbs

inging artifact correction is applied ( Kellner et al., 2016 ), and resid-

als are calculated from denoised images for QC purposes. Provided

 reverse phase encoding, susceptibility distortion, head motion, and

ddy currents are corrected ( Andersson et al., 2003 ; Smith et al., 2004 ;

ndersson and Sotiropoulos, 2016 ). If none is provided, only motion

orrection is performed. Additionally, outlier detection and replacement

re applied ( Andersson et al., 2016 ). After this step, the quality of the

otion and inhomogeneity corrected diffusion images is assessed us-

ng eddy_quad ( Bastiani et al., 2019 ), and a non-uniformity bias field

orrection ( Tustison et al., 2010 ) is applied to finalize DWI prepro-

essing. Next, the b0 image is extracted from the corrected DWI and

inearly registered to the main structural image (i.e., T1nativepro ). A

WI brain mask is generated by registering the MNI152 brain mask

o DWI space using previously generated transformations. A diffusion

ensor model ( Basser et al., 1994 ) is then fitted to the corrected DWI

nd the fractional anisotropy and mean diffusivity images are com-

uted ( Veraart et al., 2013 ). An estimation of the response function

s calculated over different tissues: cerebrospinal fluid, white matter,

nd gray matter ( Dhollander, et al., 2016 ). These are later used to es-

imate the fiber orientation distribution (FOD) by spherical deconvo-

ution ( Jeurissen et al., 2014 ; Tournier et al., 2004 ). Next, intensity

ormalization is applied to each tissue FOD ( Raffelt, et al., 2017 ). A

econd registration, in this case non-linear, is calculated between the

ormalized white matter FOD and the T1-weighted image previously

egistered linearly to DWI space. The resulting warp field allows for
9 
n improved registration between the T1-weighted and the native DWI

pace in most datasets. Finally, the 5TT segmentation image is registered

o native DWI space and a gray matter white matter interface mask is

alculated. For QC purposes, a track density image ( Calamante et al.,

010 ) is computed with 1 million streamlines using the iFOD1 algo-

ithm ( Tournier et al., 2012 ) and anatomically constrained tractography

 Smith et al., 2012 ). Additionally, if the user has an already processed

WI image, we provide the possibility of skipping the processing mod-

le, and only running the corresponding steps of tensor fitting, FOD cal-

ulation and DWI registration to the T1nativepro (flag -dwi_processed ) .

urthermore, if the user has several DWI shells and desires to process

hem individually could run the pipeline specifying the shell to process

ith -dwi_main and the name of the acquisition with -dwi_acq (eg. The

ptional arguments to process the DWI would be: -proc_dwi -dwi_main

ub-01/dwi/sub-01_desc-1000b_dwi.nii.gz -dwi_acq 1000b). 

C: structural connectome generation. Structural connectomes are gener-

ted with Mrtrix3 from pre-processed DWI data from the previous mod-

le and subcortical and cerebellar parcellations are non-linearly regis-

ered to native DWI space. First, a tractography with 40 million stream-

ines (default but modifiable, maximum tract length = 400, minimum

ength = 10, cutoff = 0.06, step = 0.5) is generated using the iFOD2 algo-

ithm and 3-tissue anatomically constrained tractography ( Smith et al.,

012 ; Tournier et al., 2010 ). A second tract density image (TDI) of the

esulting tractography is computed for QC. By default, the full brain

ractography is erased at the end of this module but can be kept using

he option “-keep_tck ”. Next, spherical deconvolution informed filtering

f tractograms [SIFT2 ( Smith et al., 2015a )] is applied to reconstruct

hole brain streamlines weighted by cross-sectional multipliers. The re-

onstructed cross-section weighted streamlines are then mapped to each

arcellation scheme, with (i) cortical, (ii) cortical and subcortical, and

iii) cortical, subcortical, and cerebellar regions ( Smith et al., 2015b .

hese are also warped to DWI native space. The connection weights be-

ween nodes are defined as the weighted streamline count, and edge

ength matrices are also generated. 

.1.3. Resting ‐state fMRI processing 

This module processes the rs-fMRI scans, in preparation for the con-

truction of functional connectomes. This pipeline is optimized for spin-

cho images with reverse phase encoding used for distortion correction.

he pipeline is mainly based on tools from FSL and AFNI for volumet-

ic processing, as well as FreeSurfer and Workbench for surface-based

apping (Fig. S1D). 

Initial fMRI processing steps involve the removal of the first five vol-

mes to ensure magnetic field saturation, image re-orientation (LPI),

s well as motion and distortion correction. Motion correction is per-

ormed by registering all time-point volumes to the mean volume,

hile distortion correction leverages main phase and reverse phase field

aps acquired alongside rs-fMRI scans. Nuisance variable signal is re-

oved either using an ICA-FIX classifier with a default training set or

ustom training set input by the user ( Griffanti et al., 2014 ; Salimi-

horshidi et al., 2014 ) or by selecting white matter, CSF, and global

ignal regression [for Discussion, see ( Murphy et al, 2009 , Murphy and

ox 2017 , Vos de Wael et al. 2017 )]. Additionally, a regression of time

oints with motion spikes is performed using motion outlier outputs

rovided by FSL. Volumetric timeseries are averaged for registration to

ative FreeSurfer space using boundary-based registration ( Greve and

ischl, 2009 ), and mapped to individual surface models using trilinear

nterpolation. Native-surface and template-mapped cortical time series

ndergo spatial smoothing (Gaussian kernel, FWHM = 10 mm), and

re subsequently averaged within nodes defined by several parcellation

chemes. Parcellated subcortical and cerebellar time series are also pro-

ided and are appended before cortical time series. 

C: functional connectome generation. Individual rs-fMRI time series are

apped to individual surface models. Native surface-mapped time se-
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v  
ies are registered to standard surface templates (fsaverage5, conte69).

ative surface and conte69-mapped time series are averaged within cor-

ical parcels. The subcortical and cerebellar parcellations are warped to

ach subject’s native rs-fMRI volume space and used to extract the time

eries within each node. Individual functional connectomes are gener-

ted by cross correlating all nodal time series. 

.1.4. Microstructural processing and microstructural profile covariance 

MPC) matrix generation 

This module samples intracortical intensities from a quantitative

RI contrast, generating a depth-dependent intracortical intensity pro-

le at each vertex of the native surface mesh. By parcellating and

ross-correlating nodal intensities, this module generates MPC matri-

es. This approach has been previously applied over the whole cortex

 Paquola et al., 2019b ), as well as in targeted structures such as the in-

ula ( Royer et al., 2020 ). The first processing step is a boundary-based

egistration from the quantitative imaging volume (default) or input

icrostructurally sensitive image contrast to FreeSurfer native space.

hen, 16 equivolumetric surfaces ( Waehnert et al., 2014 ) are generated

etween the pial, and white matter boundary previously defined from

reeSurfer. Intracortical equivolumetric surfaces are generated using

ttps://github.com/kwagstyl/surface _ tools . Surfaces closest to pial and

hite matter boundaries are discarded to minimize partial volume ef-

ects, resulting in 14 surfaces. A surface-based registration is performed

o fsaverage5 and conte69–32k templates, and the vertex-wise intensity

rofiles are averaged within parcels for each parcellation. Nodal profiles

re cross-correlated across the cortical mantle using partial correlations

ontrolling for the average cortex-wide intensity profile. Several regions

re excluded when averaging cortex-wide intensity profiles, including

eft/right medial walls, as well as non-cortical areas such as the corpus

allosum and pericallosal regions. 

.2. Quality control 

Micapipe includes an integrated QC module, which can be run at any

oint during processing. This step generates group-level and individual-

pecific QC reports allowing the user to identify missing files, verify

egistration performance, and check outputs requiring further inspec-

ion. Individual QC generates an html report with detailed information

f each processing step ( Fig. 2A ). The report contains different tabs, one

er module: main inputs and outputs of each module, main parameters

f the processing steps (obtained from the metadata json sidecar files

enerated by micapipe ), volume visualization of the main outputs, visu-

lization of the main registrations, different surfaces generated by the

ipeline, parcellations plotted on native surface, structural connectome

atrices, functional connectome matrices, geodesic distance matrices,

icrostructural intensity profiles and connectomes and microstructural

rofiles (image intensities at each cortical depth) plotted on the native

urface. Group level QC generates a color-coded table (with rows for

ubjects and columns for modules ( Fig. 2B )). 

.3. Additional features 

.3.1. Automatic bundle segmentation 

The micapipe repository also includes an optional automatic

irtual dissection of major fiber tracts (Fig. S2A). This tool is an adap-

ation of XTRACT ( Warrington et al., 2020 ) implemented using Mrtrix3

nd ANTs, and its main purpose is to split a tractography (tck file) into

he main white matter tracts. The automatic bundle segmentation uses

lready established automatic dissection protocols manually tuned for

ptimal performance. Derived from a full brain tractography, 35 bun-

les are virtually dissected using the LANIREM protocols . The quality of

he full brain tractography will determine the quality of bundle sepa-

ation. It is highly recommended to provide a tractography with more

han one million streamlines, and QC for any errors. Strategies such as
10 
natomically constrained tractography (ACT) and spherical deconvolu-

ion informed filtering of tractographies (SIFT), which are available in

rtrix3, should aid in obtaining such high-quality tractographies. For

rocessing a Non-linear (SyN) registration of the native FA map to the

A atlas (FMRIB58_FA_1mm) is calculated. Resulting transformations

re then applied to each bundle protocol to register them to the native

A space (DWI). Finally, each white matter bundle is filtered according

o the dissection protocols. 

.3.2. Anonymize function 

A function to anonymize the anatomical images from the BIDS di-

ectory for data sharing is provided within the micapipe repository as an

xtra feature. Native structural images are anonymized and de-identified

ith one of three different methods: de-facing, linear refacing or refac-

ng with a non-linear warp field (Fig. S2B). This tool uses a custom tem-

late and a set of ROIs specifically developed to identify the face and

kull. The full head template was created using the T1-weighted images

resolution of 0.8 × 0.8 × 0.8 mm) of 60 randomly selected healthy

ndividuals from the MICA-MICs dataset ( Royer et al., 2021 ). An inter-

ubject non-linear registration was performed without any mask, then

he template was built using the mean of the normalized images. Three

asks were generated: an ROI that covers the face, a brain mask, and a

rain and neck mask. Unlike other algorithms, micapipe_anonymize sup-

orts different anatomical modalities ( e.g. , quantitative T1 maps). 

.4. Feature matrices 

Besides surfaces and parcellations, micapipe outputs up to four inter-

egional matrices across several parcellation: structural connectome

SC), functional connectome (FC), geodesic distance (GD) and mi-

rostructural profile covariance (MPC). Rows and columns of GD and

PC matrices follow the order defined by annotation labels associated

ith their parcellation (see parcellations in the micapipe repository), in-

luding unique entries for the left and right medial walls. For exam-

le, row and column entries of the Schäfer-100 matrices are ordered

ccording to: Left hemisphere cortical parcels (1 medial wall followed

y 50 cortical regions), and right hemisphere cortical parcels (1 me-

ial wall followed by 50 cortical regions). FC and SC matrices follow

he same ordering, although entries for subcortical and cerebellar struc-

ures are appended before cortical parcels. As such, row and column

ntries of the Schäfer-100 FC and SC matrices are ordered according

o: Subcortical structures and hippocampus (7 left, 7 right), cerebellar

odes (34 regions), left hemisphere cortical parcels (1 medial wall fol-

owed by 50 cortical regions), and right hemisphere cortical parcels

1 medial wall followed by 50 cortical regions). The ordering of all

arcels and their corresponding label in each volumetric parcellation

re documented in lookup tables provided in the micapipe repository

 parcellations/lut ). Further information about the organization and vi-

ualization of the output connectomes can be found in the respective

ection of the documentation. 

.5. Validation experiments 

The pipeline was tested in 455 human participants from seven

atasets (Tables S1 and S4): MICA-MICs, ( Royer et al., 2021 ), EpiC-

NAM ( Rodríguez-Cruces et al., 2020 ), Cam-CAN ( Shafto et al., 2014 ),

UDMEX ( Angeles-Valdez et al., 2022 ), MSC ( Gordon et al., 2017 ), and

T-Audiopath ( Sitek et al., 2019 ). EpiC-UNAM consists of two sepa-

ate acquisitions: one cross-sectional and one longitudinal. Acquisition

nd processing details for each dataset can be found in the section

Processing databases ” of the online documentation. 

.5.1. Inter ‐subject consistency 

We assessed inter-subject consistency at the level of the first eigen-

ector/gradient of each matrix, matrix edges, and three widely graph

https://github.com/kwagstyl/surface_tools
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heoretical measures (node strength, characteristic path length, cluster-

ng coefficient). Evaluations were carried out across three selected par-

ellations (Schäfer-100, 400 and 1000). Inter-subject consistency was

uantified as the Spearman correlation between each participant mea-

ure and the group average measure for each available modality. This

rocedure was applied for the gradient 1, edges, and the three graph

eatures ( Fig. 3 ). 

To generate gradients , we used BrainSpace ( http://brainspace.

eadthedocs.io , Vos de Wael et al., 2020 ), with the following options:

ormalized angle kernel, diffusion embedding with alpha = 0.5 and au-

omatic estimation of the diffusion time (See micapipe-supplementary

or details). Group-level gradients were constructed from the aver-

ge of subject-level cortical matrices. For MPC, FC, and GD, ma-

rices were thresholded row-wise to retain the top 20% edges (see

Building gradients’ in the documentation, Fig. S3 for an example at the

ICs dataset). SC matrices were log-transformed to reduce connectivity

trength variance, but not thresholded. Moreover, left and right hemi-

pheres were analyzed separately for SC, given limitations of diffusion

ractography in mapping inter-hemispheric fibers. Hemispheres were

lso analyzed separately for GD gradients, as the surface-based mea-

ure of geodesic distance used here is computed on distinct hemisphere

urface spheres. The For each subject, we aligned the first gradient using

rocrustes rotations to the group-level gradient for each modality, and

omputed correlations as a measure of inter-subject consistency. 

Graph features: Graph measurements were computed using the igraph

 package ( igraph.org/r ). We focused on three widely used graph-

heoretical parameters, node strength, characteristic path length, and

lustering coefficient ( Rubinov and Sporns, 2010 ). We computed the

lustering-coefficient as a measure of segregation, which provides infor-

ation about the level of local connections in a network. The character-

stic path length quantified network integration with short path lengths

ndicating globally efficient networks. Dijkstra’s algorithm was used to

alculate the inverse distance matrix ( Dijkstra, 1959 ) and infinite path

engths were replaced with the maximum finite length ( Van den Heuvel

t al., 2008 ). Finally, we calculated strength to characterize the rele-

ance of the individual nodes. FC strength was calculated only with

ositive values. Using the same thresholding as for the diffusion map

mbedding, GD, MPC and FC matrices were thresholded to retain the

op 20% of the edges, and SC was analyzed using the un-thresholded,

eighted networks. 

.5.2. Inter ‐datasets similarity 

To assess stability across datasets, we computed Spearman’s corre-

ation coefficients between the group-level measures of each pair of

atasets for each MRI modality ( Fig. 4 ). 

.5.3. Test ‐retest similarity 

To assess the capabilities of micapipe to generate reproducible re-

ults in a test-retest scenario ( Seguin et al., 2022 ), we used 53 sub-

ects with full acquisitions from the Human Connectome Project. We

rocessed run-1 as test and run-2 as retest for functional and struc-

ural modalities. For diffusion MRI we processed DWI_dir95 as test and

WI_dir96 as retest. MPC was calculated using the T1w/T2w images

ith run-1 and run-2 of each. We computed the similarity between

ach subject’s matrices using Pearson’s correlation for all rows, each

ndicating the similarity of a single node, then by averaging all node’s

orrelation to produce a single value of similarity between matrices

 Mansour et al., 2022 ). This procedure was performed between all pairs

f subjects to generate a subject-test by subject-retest similarity matrix

or each modality (GD, SC, FC, and MPC) and three selected parcel-

ations (Schaefer-100, 400, and 1000; Fig. 5 A,B). We quantified both

ntra- and inter-individual matrix similarity of each modality by par-

ellation. Intra-individual similarities were averaged to index reliabil-

ty, indicating the extent of processing consistency for an individual by

odality (matrix diagonal). The inter-individual similarities were aver-

ged to produce a measure of population uniformity of the processed
11 
atrices (triangular matrix). Ideally, the processed matrices should be

eliable ( i.e., high reliability) and preserve inter-individual differences

 i.e., low uniformity). Hence, high reliability and low population unifor-

ity is desirable. Additionally, we use a measure of Identifiability which

uantifies how an individual can be recognized from a group based

n the matrix features ( Amico and Goñi, 2018 , Mansour et al., 2021 ).

dentifiability was calculated by the effect size of the difference in the

eans of intra-individual and inter-individual similarities divided by the

ooled standard deviation of the two distributions. 

.6. Version control and containers 

micapipe is executable via a Docker container, and we provide in-

ormation on how to convert it to a singularity image either via directly

ulling from dockerhub or converting a local image ( Kurtzer et al., 2017 ).

ach new version of micapipe is uploaded and tagged, and changes are

ocumented. The current release version is v.0.1.2. Our goal is to main-

ain continuous integration. Additionally, our pipeline has adopted the

tandards of BIDS-Apps ( Gorgolewski et al., 2017 ) and of the center for

eproducible neuroimaging computation ( Robert et al., 2016 ). 

thics statement 

No data were collected as part of the research described here. This

tudy involved the re-analysis of six publicly available datasets and

ne shared dataset (EpiC). For the MICs dataset the Ethics Commit-

ee of the Montreal Neurological Institute and Hospital approved the

tudy (2018-3469). The EpiC dataset was approved by The Ethics

ommittee of the Neurobiology Institute of the Universidad Nacional

utónoma de México (019.H-RM). The Audiopath dataset was approved

y the ethics committee of the Faculty for Psychology and Neuro-

cience at Maastricht University (ERCPN-167_09_05_2016). The SUD-

EX dataset was acquired according to the Declaration of Helsinki

nd was approved by the Ethics Committee of the Instituto Nacional
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pproved by the local ethics committee, Cambridgeshire 2 Research

thics Committee (reference: 10/H0308/50). For the HCP dataset, re-

earch procedures and ethical guidelines were followed in accordance

ith the Institutional Review Boards, with details on the HCP website

 http://www.humanconnectome.org/ ). 

ata and code availability 

An expandable documentation at https://micapipe.readthedocs.io

escribes installation, usage, pipeline steps, updates, extra features, and

rovides a series of ready-to-use tutorials. All code can be found at https:

/github.com/MICA-MNI/micapipe , and is published under the General

ublic License 3.0. Micapipe is delivered as a docker container via BIDS-

pp [ http://bids-apps.neuroimaging.io/apps/ ( Gorgolewski et al.,

017 )], and available on ReproNim [ https://github.com/ReproNim/

ontainers ( Halchenko et al., 2021 )]. Detailed steps to use the Docker

ontainer and to build a corresponding singularity container are avail-

ble under the readthedocs documentation. Code for figures and ta-

les can be found in the micapipe-supplementary GitHub repository

 https://github.com/MICA- MNI/micapipe- supplementary ). 
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