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Abstract—The visual system classifies objects into cate-

gories, and distinct populations of neurons within the tem-

poral lobe respond preferentially to objects of a given

perceptual category. We can also classify the objects we

recognize with the sense of touch, but less is known about

the neuronal correlates underlying this cognitive function.

To address this question, we performed a multivariate pat-

tern analysis (MVPA) of functional magnetic resonance

imagining (fMRI) activity to identify the cortical areas that

can be used to decode the category of objects explored with

the hand. We observed that tactile object category can be

decoded from the activity patterns of somatosensory and

parietal areas. Importantly, we found that categories can

also be decoded from the lateral occipital complex (LOC),

which is a multimodal region known to be related to the rep-

resentation of object shape. Furthermore, a hyperalignment

analysis showed that activity patterns are similar across

subjects. Our results thus indicate that tactile object recog-

nition generates category-specific patterns of activity in a

multisensory area known to encode objects, and that these

patterns have a similar functional organization across indi-

viduals. � 2017 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

The ventral stream of the cortical visual system contains

neural representations of visual objects such as faces,

animals, and inanimate objects. Thus, an organizing

principle of the visual system is the neural encoding of

abstract categories of behaviorally relevant objects
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(Kiani et al., 2007; Meyers et al., 2008; Freeman and

Simoncelli, 2011; Lehky et al., 2014; Aparicio et al.,

2016). It is well established that these neuronal represen-

tations are invariant to changes in low-level physical char-

acteristics such as luminance, contrast, angle of view,

location, or size. Moreover, it has been observed that

some of these circuits encode representations that are

invariant to the sensory modality used to recognize the

objects, i.e., a given object elicits similar patterns of neu-

ronal activity irrespective of the object being recognized

by visual, auditory, or tactile cues (Amedi et al., 2001;

Grill-Spector et al., 2001; Ghazanfar and Schroeder,

2006; Kassuba et al., 2011; Man et al., 2015). These uni-

fied neuronal representations correspond closely with the

unified and stable subjective perception that we have of

the objects around us.

In the somatosensory system, the different physical

attributes that define a tactile object, such as texture,

curvature, or edge orientation, are encoded in the

neuronal activity of numerous parietal areas that show

varying degrees of selectivity for those features

(Bodegård et al., 2001; Iwamura, 1998; Sathian, 2016;

Yamada et al., 2016; Yau et al., 2009, 2016). Peripheral

receptors and areas 1 and 3b, for example, contain neu-

rons that are selective for the orientation of edges

(Bensmaia et al., 2008; Pruszynski and Johansson,

2014; Peters et al., 2015); area SII contains neurons that

show orientation selectivity across several finger pads

(i.e., they show positional invariance; Fitzgerald et al.,

2006), and there is evidence that edge curvature is repre-

sented in area 2 (Yau et al., 2013).

However, it is not clear if these variate tactile

attributes, which are encoded in separate neuronal

populations at early processing stages, converge in

upstream association areas to generate a unified

representation of tactile objects. Moreover, it is

important to know if such tactile category encoding is

located within the somatosensory system itself or

whether it is located within a multisensory association

area. There is strong evidence that the object

representations along the temporal lobe can be

activated by more than one sensory modality (Kim and

Zatorre, 2011; Lacey and Sathian, 2014; Podrebarac

et al., 2014; Snow et al., 2014), and we know that visual

information can transfer to the tactile modality and vicev-

ersa (Yildirim and Jacobs, 2013). In particular, the lateral

occipital complex (LOC) has been shown to encode

objects that are identified by touch or sight (Amedi

et al., 2002; Peltier et al., 2007; Stilla and Sathian,

2008; Lucan et al., 2010; Masson et al., 2015; Erdogan
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et al., 2016). Pietrini and colleagues showed that the infer-

otemporal cortex generates neuronal representations of

tactile objects and that these representations are similar

to those generated by visually identifying the same

objects (Pietrini et al., 2004).

The level of abstraction that follows object

representation is object category, i.e., the representation

of a group of objects that share a high-level attribute

such as function (e.g., spoons or pens) or behavioral

relevance (e.g., faces or animals). These categories

have been described in the prefrontal, temporal and

occipital lobes (Ishai et al., 2000; Kourtzi and Connor,

2011; Watanabe et al., 2012; McKee et al., 2014;

Proklova et al., 2016). We seek to gather evidence on

whether the cortical activity could be used to decode the

category of an object explored with the sense of touch.

Recognizing and classifying the objects we touch is a

fundamental cognitive skill that allows not only naming

those objects, but more importantly, allows recovering

stored relevant information related to the objects around

us. Although objects vary considerably in their specific

physical characteristics, classifying them into perceptual

categories simplifies and organizes the sensory world

around us. It allows planning our behavior and

executing the motor commands to adequately interact

with those objects. It is well established that subjects

can correctly identify and categorize objects explored

only with the sense of touch (for a recent review see

Sathian, 2016). This can also be done by congenitally

blind individuals, indicating that a visual representation

of objects is not needed for identification or classification.

A relevant question is thus what are the neuronal corre-

lates of tactile object identification and, moreover, the

neuronal correlates of tactile object categories.

The existence of neuronal representations of tactile

categories would be consistent with the idea that the

somatosensory system uses similar processing

algorithms and strategies as the visual system, which

hierarchically encodes object properties such as texture,

form, object identity and finally, object category.

We performed a multivariate pattern analysis (MVPA)

on block-design functional magnetic resonance imagining

(fMRI) data to identify the cortical areas that contain

enough information to decode tactile object categories

significantly above chance (Hanke et al., 2009; Haxby

et al., 2014). We probed the whole cortex with a search-

light analysis that selected the voxels within a sphere

(radius = 3 voxels) to train a linear support vector

machine (LSVM) to classify the activity associated with

10 types of objects that were explored with the right hand.

Our results revealed voxel clusters in the parietal and the

LOC from which the category of the touched objects could

be decoded.
EXPERIMENTAL PROCEDURES

Stimuli and task design

Participants explored a total of 120 objects grouped into

10 categories comprising spoons, stuffed toys, bottles,

pens, books, balls, strings, drinking glasses,

pseudorandom 3D shapes, and square sandpapers with
different roughness (12 different objects per category).

The objects were explored for 3 s with the right hand,

and participants performed a one-back repetition

detection task in which they had to indicate whether the

object they explored was the same or different from the

previous one. After the 3 s exploration period the object

was removed and the participants had a 1 s window to

press one of two buttons with their left hand to indicate

whether the object was the same or different from the

previous one.

A block consisted of six stimuli of the same category

(Fig. 1). Blocks of different object categories were

selected in pseudo-random order, lasted 24 s each, and

were separated by a 12 s baseline. The stimuli in each

block were selected with a 50% chance of being the

same as the previous one. A presentation of 10 different

blocks defined a run, and subjects performed 12

repetition runs that lasted 372 s each. Participants were

given a 15 min break after six runs.

Subjects lay within the scanner with their right palm up

and the experimenter handed them the objects following

instructions from a computer monitor about the time and

the object to be handled. The participants were

instructed to close their eyes within the scanner and

held a button pad with their left hand to press one of

two buttons to indicate whether the current object was

the same or different from the previous one. The objects

we used were visible to the participants before and after

completion of the scans. We did not attempt any

systematic selection of object categories, and our

criterion was straightforward: we selected common

objects that could be comfortably manipulated with one

hand and that were compatible with MRI. Only one

category (the 3D random shapes that we used in a

previous study, Rojas-Hortelano et al., 2014) contained

non-familiar objects. We measured volume, weight and

compliance (using von Frey filaments) of each object.

Mean object volume was 251 cm3, mean weight 60 g,

and mean compliance of non-rigid objects was 2 N.
Subjects and Image acquisition

Ten healthy right-handed subjects (5 women, age range

27–36 yr) underwent fMRI on a 3-T Phillips Achieva TX

scanner (Best, The Netherlands) using an echo planar

imaging gradient echo (EPI-GRE) sequence with a

repetition time (TR) of 2 s and an echo time (TE) of

27 ms. Functional volumes consisted of 32 axial slices

covering the whole brain with a voxel size resolution of

2 � 2 � 3.5 mm3. On each of the 12 repetition runs 190

volumes were acquired. Subjects gave written consent

and were compensated for their time. Experimental

procedures were approved by the institutional Research

Ethics Committee and were in accordance with the

Declaration of Helsinki.
Data preprocessing and pattern analysis

Data preprocessing was performed with FSL (FMRIB’s

Software Library; www.fmrib.ox.ac.uk/fls). Each run was

motion-corrected to the first volume of each participant.

No smoothing or filtering was applied. Images were

http://www.fmrib.ox.ac.uk/fls


Fig. 1. Task design. (A) Participants explored an object with their right hand for 3 s and had to

indicate whether it was the same or different from the previous object. A 1 s window separated

each stimulus presentation during which subjects pressed one of two buttons with their left hand to

communicate their decision (R). (B) Six stimulus presentations of the same category defined a

block, and 10 blocks of the different object categories constituted a run. A total of 12 repetition runs

were collected in the fMRI session of each participant. Each block lasted 24 s and were separated

by a 12 s baseline period.
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brain-extracted and temporally realigned. MVPA was

performed using the PyMVPA software package (Hanke

et al., 2009) and the LibSVM’s implementation of the

LSVM (www.csie.ntu.edu.tw/~cjlin/libsvm). We used the

multi-class classification implemented in the PyMVPA

package. The particular algorithm, called ‘‘boosting” uses

meta-classifiers that are formed from basic classifiers and

then used to forma a meta-prediction (Connolly et al.,

2016; Hanke et al., 2009).

Previous to the MVPA, the events in each run were

time-shifted 6 s to account for the hemodynamic

response. Each run was linearly detrended, Z-scored,

and had the baseline volumes removed. The blood-

oxygen-level-dependent (BOLD) signal of each voxel

was averaged over the 24 s duration of each stimuli

block (a 24 s block contained six stimuli of the same

category; Fig. 1). We performed a 10 way classification

in which the LSVM classifier had to choose among the

10 possible categories for the prediction. The classifier

performance was calculated by adding the number of

correct classifications divided by the total number of

classification attempts. A full-brain searchlight analysis

was performed using a 3-voxel radius, and an LSVM

classifier was used to assess whether object category

could be differentiated by the patterns of BOLD activity

in the voxels within the searchlight sphere (Pereira and

Botvinick, 2011). In the searchlight analysis, each voxel

was selected along with a sphere of voxels around it.

The BOLD signal in these voxels (the mean activity
across the 24-s block duration) was

used to train the LSVM classifier to

measure the accuracy with which the

sphere of voxels could predict the dif-

ferent object categories. The accu-

racy of the sphere then becomes the

accuracy of the voxel at the center

(Etzel et al., 2013). We illustrate the

effect on accuracy of using different

radiuses for the searchlight analysis

(Fig. 5), but for all the analyses and

statistical calculations we used a 3-

voxel radius.

The classifier performance for

each sphere of voxels was estimated

using a leave-one-out cross-

validation scheme. This consisted in

training the classifier using all but

one experimental run and then

predicting the object category of that

test run. A different test run was

then selected and the classifier was

then re-trained with the remaining

runs. The procedure was repeated

until all runs were used once as the

test run. This was repeated for every

voxel in the brain, resulting in a

spatial map of prediction accuracy. A

map of accuracy was created for

each participant.

The single-subject maps were

thresholded with the binomial test to

show the voxels whose probability of
identifying the object categories was significantly above

chance level (p< 0.01; chance level is 1/10). For the

120 trials distributed over 10 categories the expected

chance outcome is 12 correct trials. The binomial test

tells us that 20 or more correctly classified trials are

significantly above chance, and that corresponds to a

performance accuracy of 20/120 = 0.167, which is the

cutoff level depicted in the color scale of Fig. 3. In order

to estimate the cluster size expected by chance we

selected the sphere with the best performance in a

given participant, and calculated the performance under

a no-signal condition, in which the category labels were

randomized in the runs used to train the classifier. We

repeated this process 1000 times. This provided us with

an expected performance distribution. We created 1000

new single-subject maps for each run by taking random

samples from the created distribution. These provide us

with performance maps under a no-signal condition.

From these maps, we calculated the cluster sizes

expected by chance and use them to correct the single-

subject maps (p< 0.01).

To identify the informative voxels across subjects

(group analysis) we transformed each subject’s map to

the MNI-152 standard space and applied a binomial test

on the pooled trials to filter out the voxels that did not

surpass the 0.1 chance probability value. After this, we

performed a t-test on each voxel of this standard map

(cut-off value t(9) = 2.82; p= 0.01; Fig. 4), correcting

http://www.csie.ntu.edu.tw/<ucode type=


Fig. 2. Example data. The mean BOLD signals of 25 voxels from a mask over the lateral occipital

complex (LOC) of one subject are shown for each object category (Z-score, voxels were selected

from an ANOVA-based feature selection ranking). The LSVM algorithm is trained to classify the

spatial pattern of activity associated with each category and its accuracy is then measured by

classifying data on which it was not trained.

Fig. 3. Single-subject prediction accuracy maps. The prediction accuracy (probability of correct

classification) at each voxel is shown in color and was calculated from a sphere of voxels around it

(radius = 3, searchlight analysis). Only voxels with accuracy above chance level are shown

(p< 0.01, binomial test, cluster-corrected). Individual maps were transformed to the MNI-152

atlas. Note that although significant variability is observed between participants, informative voxels

are consistently observed in the parietal, and temporo-occipital cortices.
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for multiple comparison with the False Discovery Rate

method (p< 0.01). Finally, we performed cluster

correction on the group-level map by randomly shuffling
the categories labels (Monte Carlo

permutation testing, 1000

permutations). This group analysis

resulted in a new map showing the

significant t-static value (Fig. 4) of

performance accuracy across

participants.

For the hyperalignment analysis,

masks in the parietal and the LOC

were used to select the voxels that

were analyzed using the methods

described by Haxby et al., (2011) with

the PyMVPA software package

(Hanke et al., 2009). Briefly, hyper-

alignment is a method that aligns par-

ticipants’ data in a common high-

dimensional space in order to evalu-

ate the extent to which activity pat-

terns are consistent across subjects.

For this, the activity of the voxels

selected from the masks is repre-

sented as a high-dimensional vector

(a dimension for each voxel), and a

transformation matrix is used to rotate

the vector such that distances

between vectors are minimized (one

vector for each stimulus category).

This creates what is called a common

model space that represents the

activity associated with each object

category across subjects. The LSVM

classifier is then trained to classify

the object categories using the

aligned activity, and its accuracy is

tested on the activity of each partici-

pant in a leave-one-out scheme. The

result of this analysis is an accuracy

estimate with which the category of

a tactile object can be decoded from

the activity of one subject using what

the classifier learned from the other

subjects. We used 300 voxels

selected from an ANOVA and ranked

them according to their modulation

across the ten object categories

(ANOVA-based feature selection

ranking). We avoided double-dipping

by leaving the subject to be tested

out of the voxel selection.
RESULTS

The participants explored the objects

with their right hand and successfully

performed the one-back same-

different task with an overall 90.4%

of correct responses (±1% s.e.;

chance performance is 50%). This

behavioral result confirms that
subjects were attending to the stimuli and were using

tactile information to determine whether two
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consecutively presented objects were the same or

different (Fig. 1). We found no differences in the

percentage of correct responses across object

categories (p= 0.57, Friedman test). This is an

important result because it rules out that differences in

task difficulty across categories (and not tactile

properties) might have helped the LSVM classifier to

distinguish between objects.

We used a MPVA searchlight analysis to identify the

brain areas with activity patterns that were significantly

informative about object categories. An example of the

raw data that were used to train the LSVM classifier is

illustrated in Fig. 2, where the BOLD signals of 25

voxels from the LOC are shown for the different object

categories that a participant explored. The different

spatial patterns, induced by the different object

categories, are used by the LSVM classifier to predict

the objects that participants touch. Although there might

appear that some object categories share similarities in

their pattern of cortical activation, a representation

similarity analysis (RSA) failed to reveal any meaning

pattern, i.e., we could not establish a hierarchical

arrangement of the evoked neuronal activity.

The voxels that are significantly informative about

tactile category are shown in single-subject maps in

Fig. 3 (p< 0.01, corrected for multiple comparisons;

see Methods). The results illustrate that although a

considerable amount of variability exists between

subjects, there are informative clusters consistently

located in the parietal and temporo-occipital regions.

These single-subject maps demonstrate that prediction

accuracies can reach 25%, well above the 10% chance

accuracy expected from classifying 10 categories.

The brain regions that were consistently predictive

across subjects were identified by a group analysis that

marked the voxels with prediction accuracy significantly

above chance (p< 0.01; see Methods). This group

analysis revealed that the category of tactile objects can

be decoded from the activity of two bilateral cortical

clusters: one is a large cluster spanning the anterior and

posterior parietal lobes, and the other is a smaller

cluster located in the lateral-occipital regions of both

hemispheres (Fig. 4).

To test the generality of these results we used a

different classifier algorithm called k-Nearest-Neighbor

(kNN) and found that although the general accuracy
Fig. 4. Object category could be predicted from clusters located over the p

occipital cortices. The significantly informative voxels across participants (p
and cluster-corrected) are shown over lateral and superior views of the M

denotes the t-score of the test at the group level (n= 10 participants). (For

references to colour in this figure legend, the reader is referred to the web v
was �20% lower with this classifier, the results are

similar in the sense that both areas are informative

about object category and the parietal areas have larger

prediction accuracy.

To estimate the variability in classification accuracy

that can be expect by chance we carried a Monte Carlo

permutation testing in which we randomly shuffled

object categories and recalculated the classification

accuracy (1000 repetitions). The distribution of

accuracies is plotted in Fig. 6 and it shows that the

chance of obtaining a classification accuracy larger than

0.18 is less than 0.01. Importantly, the accuracy from

shuffled data never reached the peak accuracies of

LOC and parietal cortices, so the statistical significance

of the results are at least p< 1e�3. This result

demonstrates that our results are significantly above

chance and above the noise expected from the intrinsic

variability in the BOLD signal.

It is known that the number of informative voxels

increases when a larger searchlight radius is used

(Etzel et al., 2013). To explore this effect, we calculated

the significantly informative voxels, at group level, for

radiuses of 2–5 voxels (Fig. 5). The results of this analysis

show that, as expected, the extension of the informative

clusters grows in proportion to the radius used in the

searchlight procedure. We note, however, that the loca-

tion of the most significantly informative clusters (t-score
>5) remains centered in the parietal and lateral

temporo-occipital cortices. As Fig. 5 shows, the search-

light with radiuses 4 and 5 revealed that the posterior

end of the supplementary motor area (SMA) is also infor-

mative about object category. This observation is consis-

tent with previous research indicating that the SMA is

engaged in tactile object recognition (Reed et al., 2004).

The figure also shows small changes in the location of

peak significance and this is an expected result arising

from incorporating new voxels into the training of the clas-

sifier and the calculation of accuracy.

After having identified the parietal and the temporo-

occipital regions as informative about the object

category we then wanted to compare the prediction

accuracy between these two cortical regions, and also

estimate how this accuracy changes as a function of the

number of voxels used to train the LSVM classifier. The

voxels were selected from bilateral masks covering the

parietal lobes and the LOCs, and they were added
arietal and temporal-

< 0.01, t-test, FDR
NI-152 atlas. Color

interpretation of the

ersion of this article.)
according to an ANOVA-based

feature selection ranking. The results

shown in Fig. 6 demonstrate that, for

any given number of voxels, the

parietal lobe has a greater capacity

to identify object category as

compared to the LOC region.

Prediction accuracy peaks at around

102 voxels for both areas. Given that

the LOC and parietal cortices have

different intrinsic sizes, this analysis

shows that the parietal cortex has a

larger accuracy in predicting object

categories even when controlling for

the number of voxels. We



Fig. 5. The extension of the informative regions grows as a function of the searchlight radius (one

row for each radius, indicated by r). The significantly predictive voxels are shown in color over

lateral and superior view of the MNI-152 atlas. Note that although the area of significantly

informative regions is dependent on the radius of the searchlight sphere, the clusters remain

centered on the parietal and temporo-occipital lobes. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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additionally computed the accuracy of the combined

areas and found that it was �2% greater than that of

the parietal cortices alone. We also conducted a

psychophysical interaction analysis (PPI; Friston et al.,

1997) by placing a seed (6 mm in diameter) in the left

LOC (MNI coordinates x= �56, y= �62, z= �8) and

found that during task execution the activity of LOC and

parietal cortices (ventral portion) were negatively corre-

lated (p< 0.05). This is an interesting finding that could

be related to the different processing strategies that these

cortices use during the tactile exploration task.

It is possible that one or two categories could be

pushing discrimination accuracy up, with the rest of the

categories being discriminated at chance level. To

explore this possibility we plot the classifier accuracy for

each category, for LOC and the parietal areas (Fig. 6B).

It can be seen that, although there is a gap of �40%

between the highest and lowest category, instead of a

few areas pushing general accuracy up there is a

continuum of classification performance across

categories.

Finally, we were interested in testing the extent to

which the patterns of activity in the parietal and LOC
regions are comparable across

individuals. If the tactile exploration

of objects were to generate a

consistent pattern of activity across

individuals, that would support the

notion that the classifier is making

use of physiologically relevant

patterns inherent to the parietal and

LOC cortices. To test this, we used

a hyperalignment method in which

the activity of the parietal and LOC

regions of each subject was

projected onto a high-dimensional

space and then rotated to minimize

the distance between the

representations of the categories

across subjects. The LSVM classifier

was then trained on this hyper-

aligned activity, and the classification

performance was tested on the

activity of each participant. We

trained the classifier with voxel

activity from bilateral masks of the

parietal and LOC regions of each

participant in a leave-one-out cross-

validation scheme. The results

indicate that the hyperaligned

patterns of activity can be

successfully used to predict the

categories of the objects that each

participant is exploring (t-test,

p= 0.012 for the LOC mask,

p= 4e�5 for the parietal mask; 300

voxels were used from each mask).

This evidence supports the notion

that the exploration of tactile objects

generates similar patterns of activity

across subjects.

To test the specificity of the
hyperalignment analysis we selected voxels from masks

over the primary visual (V1) and primary motor (M1)

areas and repeated the alignment procedure and

classifier training. We found that V1 and M1 patterns of

activity were not significantly informative of object

category (V1 accuracy was 0.096, p= 0.63; M1

accuracy was 0.116, p= 0.032). It must be noted that

M1 was close to statistical significance and this could be

due to its close relationship with the parietal cortices

that, as our results show, are informative about object

category.
DISCUSSION

Our results demonstrate that the category of an object

explored with the hand can be decoded significantly

above chance from the pattern of activity of parietal and

LOC cortices of both hemispheres. The decoding

accuracy maps of single subjects show that there is

considerable variability in the distribution of voxels that

can be used to train the classifier. This may reflect

differences in the perceptual and cognitive strategies



Fig. 6. (A) Classification performance is dependent on the number of voxels used to train the LSVM classifier. The order in which the voxels from

the parietal and the lateral occipital complex (LOC) cortices are added was determined by ordering them according to an ANOVA-based feature

selection ranking. The parietal cortex has larger predictive capacity for a given number of voxels as compared to LOC. The shaded region denotes

standard error of the mean across subjects. The distribution on the right represents the classifier performance under a no-signal condition in which

the category labels in the training set are randomly shuffled (Monte Carlo permutation test, 1000 repetitions). (B) All categories contribute to the

general classification performance. The classification performance of each category was calculated from the bilateral masks of the lateral occipital

complex and the parietal cortex for all participants (n= 10). Error bars denote standard error of the mean across subjects. The distribution shown in

the right was calculated by randomly shuffling the categories before training the classifier in a permutation test (1000 repetitions).
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that each participant uses to explore and identify the

objects. Importantly, however, the group analysis

revealed consistent informative clusters in the parietal

and LOC cortices. Moreover, the patterns of activity in

these predictive areas were similar across subjects as

revealed by the hyperalignment method in which the

activity of the group could be successfully used to

decode the objects that single subjects were exploring.

This result indicates that the functional representation of

object category within this cortical region is shared

among individuals.

It is important to note that the objects from the different

categories have different shapes, weights, and textures,

and it is likely that subjects used different hand

movements to explore the objects of different categories

(Thakur et al., 2008; Chen et al., 2009). The hand move-

ments required to explore and recognize the shape of a

spoon, for example, are different from those used to iden-

tify a stuffed toy. It is not surprising, then, that object cat-

egories can be decoded from the patterns of activity of the

somatosensory areas (Gardner et al., 2007; Mollazadeh

et al., 2014; Kim et al., 2015). A plausible explanation is

that the activity of the somatosensory areas can be used

to decode objects because different categories induce dif-

ferent exploratory movements and thus generate distinct

streams of low-level physical information. The hyperalign-

ment analysis supports this view as it revealed that M1

decoding accuracy was close to statistical significance

(p= 0.032).

Although the predictive capacity of the somatic

cortices might be due in part to different physical

attributes and the different exploratory movements

inherent to each type of object, we want to point out that
accuracy levels are similar for both hemispheres (Fig. 5,

bottom panels). If low-level attributes and hand

movements were the only contributing factor to

classification performance, we would have expected

accuracy to be higher in the left hemisphere given that

subjects explored the objects with their right hand. Since

the low-level motor and somatosensory response fields

are lateralized and spatially localized, the fact that

similar performance is observed across hemispheres

suggests that more abstract information is shared

between hemispheres (Smith and Goodale, 2013).

In addition to the somatosensory cortices, our

searchlight analysis revealed that the patterns of LOC

activation also allow the decoding of tactile object

categories (Amedi et al., 2002; Saito et al., 2003). The

predictive capacity of LOC is unlikely to be explained by

low-level physical attributes such as shape, texture or

weight, or by differences in hand movements used to

explore each type of object. The LOC is a high-level visual

region that is known to be related to multimodal process-

ing of object shape and identity, and there is no evidence

suggesting that LOC is engaged in the processing of low-

level somatic information. Instead, there is a large body of

previous findings that strongly support the notion that

LOC encodes the identity of objects recognized by visual

or somatic exploration (Amedi et al., 2002; Stilla and

Sathian, 2008; Lucan et al., 2010; Masson et al., 2015;

Erdogan et al., 2016; Peltier et al., 2007).

Anatomical evidence, from tracer studies in macaque

monkeys, shows that somatosensory information reaches

the temporal lobe through the inferior parietal lobe.

Starting in the primary somatosensory cortices (areas

3a, 3b, 1 and 2), tactile activity then travels to the
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superior (area 5) and inferior parietal lobe (areas 7a and

7b). The inferior parietal lobe then projects to the

superior and inferior temporal lobes by means of the

middle and inferior longitudinal fasciculi, respectively

(Jones, 1969; Andersen et al., 1990; Distler et al., 1993;

Seltzer and Pandya, 1994; Webster et al., 1994). The

human homologs of these connections have been found

using fiber-tracking techniques (Caspers et al., 2011;

Schmahmann et al., 2007). Moreover, it has been

recently proposed that LOC and the parietal cortices are

part of a ‘‘grasping network” that generates purposeful

hand actions such as tactile object recognition, both in

monkeys and humans (Borra and Luppino, 2016; Borra

et al., 2017).

There at least two explanations that can be

contemplated in trying to understand the nature of the

representation observed in LOC. One is that LOC

contains an abstract representation of objects that can

be elicited by any sensory modality. The second

explanation is that LOC contains a visual representation

of objects, and this visual representation can be evoked

by different sensory modalities such as touch or audition

(James et al., 2002; Zhang et al., 2004).

In a previous investigation we identified the cortical

areas related to exploring and comparing the shape of

objects explored with the hand, and we also found LOC

activation (Rojas-Hortelano et al., 2014). A key experi-

mental design in that study was that the participants never

saw the objects, and their 3D shapes were pseudo-

randomly created. Thus, we know that LOC is able to

encode shapes that have never been seen. However,

any object explored with the hand, familiar or not, can

be visually represented as a combination of previously

known shapes such as spheres or cubes. Therefore, a

visual representation in LOC cannot be easily dismissed.

Recent studies have found that the occipitotemporal cor-

tex is able to represent object shape in blind people

(Pietrini et al., 2004; Bonino et al., 2008; Peelen et al.,

2014), and although this does not rule out a visual repre-

sentation in sighted individuals, the results are consistent

with the idea that LOC might encode an abstract repre-

sentation of object identity. We speculate that the parietal

cortices encode low level attributes of the objects such as

texture and weight while LOC might be encoding shape

and object identity. However, future research is needed

to elucidate the specific role that the parietal and LOC cor-

tices play in the identification of objects and object cate-

gories. Future experiments with an event-related design

are also needed for the analysis of single trials. This

would allow to compare correct versus incorrect behav-

ioral responses and the neuronal activity underlying the

decision-making component of the task.

As was brought to our attention by an anonymous

reviewer the group accuracy map (Fig. 4) shows that

the somatosensory orofacial region has significant

predictive accuracy. This is an intriguing observation

whose meaning we can only speculate about. The

identification of objects could have triggered the imagery

of the objects’ name. Although this imagery process

should have also recruited the orofacial motor cortex, it

is important to note that the MVPA does not measure
activation but makes use of the spatial patterns of

activity. In this sense, the proximity of supramarginal

gyrus and the orofacial cortices could have increased

their combined predictive capacity.

What physical attributes the participants use to

classify the objects is an interesting question. We

approached this issue by performing hierarchical

clustering on the dissimilarity matrix that results from the

pairwise comparison of the distance between categories

in the high-dimensional space. We failed to uncover any

evident or meaningful classification. This result indicates

that the categories we used did not systematically vary

along a physical or perceptual axis.

CONCLUSION

Our investigation answered a simple but important

question: tactile object categories can be decoded not

only from the somatic and motor cortices, but also from

what is likely a multimodal representation of objects

located at the junction of the occipital and temporal

lobes. How this abstract representation of objects

emerges through learning, and how it is evoked by the

low-level information arising from the sensory systems

are fundamental questions that are intensely

investigated but that we do not yet fully understand

(Man et al., 2013).

Acknowledgments—We thank Edgar Bolaños, Leopoldo Gonzá-
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