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a b s t r a c t 

The accurate recovery of an n-Dimensional field from observations that are wrapped into a particular interval 

(e.g., [− 𝜋, 𝜋] ) is a problematic step in many applications, such as holography, interferometry, optical metrology, 

magnetic resonance imaging and analog-to-digital conversion in digital photography. While methods designed for 

this purpose abound (mainly in the 2-Dimensional case), most fail if the original unwrapped field contains abrupt 

changes that become aliased. In this paper we present Maximum Smoothness Consistent Unwrapping (MSCU), 

a novel and general method that overcomes said limitation. The method operates in two stages: in the first, a 

region without aliased changes which is as large as possible (which we call the consistent region) is found, and 

in the second, the unwrapped phase in the consistent region is propagated to the inconsistent areas to get the 

final result. MSCU has the following advantages: it is well founded theoretically, which allows the assessment of 

the reliability of its results; it is directly applicable to fields in any number of dimensions and when the signal is 

wrapped module any real number P ; it has no free parameters to adjust; and it is computationally efficient and 

easy to implement. We present a formal derivation of the method and illustrations of its performance, both in 

synthetic fields –where we compare it with that of other state-of-the-art methods– and in real data (2-D data from 

optical speckle interferometry and 3-D data from magnetic susceptibility images obtained by magnetic resonance 

acquisitions). In this paper we focus on phase unwrapping applications, but the presented method may be directly 

applied to the case of other wrapping intervals as well, as for instance in High Dynamic Range image processing. 
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. Introduction 

Recovering a signal from data that has been wrapped into a given in-
erval is a problem that is relevant in several areas, such as optical inter-
erometry [1,2] and radar interferometry [3,4] . In Magnetic Resonance
maging (MRI), phase images show modulations resulting from magnetic
usceptibility which are the consequence of biologically-relevant tissue
haracteristics that change the local resonance frequency as a function
f the geometry of the object [5] . In digital photography the unwrapping
roblem can be seen in High Dynamic Range (HDR) images, as camera
ensors self-reset the pixel voltage on saturation, wrapping image inten-
ity into a given voltage interval [6,7] . 

A solution for the unwrapping problem that is compatible with the
ata is found by adding to the wrapped phase at each point an inte-
er multiple of the wrapping interval (2 𝜋 for phase fields), and many
ethods have been proposed to find it [3,8–11] . The majority of pre-

ious methods are based on the estimation of the derivatives (gradient
r Laplacian) of the unknown unwrapped field using the given wrapped
ata. Once these derivatives are estimated, the corresponding fields are
ntegrated to obtain the desired solution, either in the image domain
ollowing appropriate paths or in the frequency domain [11] . The diffi-
∗ Corresponding author. 

E-mail addresses: julio@cimat.mx , jlm@cimat.mx (J.C. Estrada), julio@cimat.mx (

ttps://doi.org/10.1016/j.optlaseng.2020.106087 

eceived 9 December 2019; Received in revised form 5 February 2020; Accepted 2 M

vailable online 14 March 2020 

143-8166/© 2020 Elsevier Ltd. All rights reserved. 
ulties with this type of approaches arise when the original unwrapped
eld contains abrupt changes (jumps or barriers), whose magnitude is
reater than half the wrapping interval (i.e., greater than 𝜋 radians for
hase fields), in which case the derivatives of the wrapped data will not
e good estimates of the true derivatives. When this occurs we say that
he original field contains barriers , which causes the wrapped field to be
nconsistent in the sense that the integration of the derivative fields may
roduce different results depending on the integration path. 

To deal with this problem, some methods choose integration paths in
 way that regions where the wrapped field is likely to be consistent are
nwrapped first, so that when inconsistent regions are unwrapped there
s sufficient correct information around them to prevent the propaga-
ion of errors [10,12–14] . However, the criteria used for path selection
s based on properties of the derivatives themselves, and these proper-
ies are not necessarily related to the barriers that may be present and
enerate inconsistencies, because the wrapping process aliases the field
o that even across barriers the derivatives of the wrapped data may be
rbitrarily small (see example in the Experiments section). Examples of
hese methods include branch cuts [13] , following level curves of the
rapped field [15] or unwrapping regions where the wrapped differ-

nces are small [14] . Although all of these methods work well in many
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ases, they may fail unpredictably in others and there is no way (other
han a subjective visual inspection) to determine if the results for a given
ata set are correct. 

In a different approach, the unwrapped solution is found by mini-
izing a cost function [16–18] , so that the reconstructed unwrapped
eld is maximally smooth. The problem here is that the resulting field

s, in general, not compatible with the data, since this process reduces
he dynamic range of the estimated unwrapped signal [17,18] . Besides,
hese algorithms use some free parameters with no principled way to
etermine their value, so there remains a degree of arbitrariness in the
olution. 

The 3–dimensional unwrapping problem is important in applications
uch as radar interferometry (InSAR) time series, and MR medical im-
ges. Some unwrapping methods that have been proposed for this case
re extensions of quality-guided strategies [19,20] and have, therefore,
he same limitations. Another approach is used in [21] . There, deriva-
ives of the wrapped phase are corrected by eliminating spurious peaks.
hese corrected derivatives are then used to adjust an analytic function
a linear combination of complex exponentials) using a least squares
pproach; from this fitted function a compatible estimate for the un-
rapped phase is constructed. Similarly to quality-guided strategies, the
roblem is that if the original wrapped field contains barriers, the phase
erivatives will be aliased by the wrapping process and the adjusted an-
lytic function will not be close to the true value. A different approach
s provided in [22] , based on the strong assumption that the phase dif-
erence in one dimension is smooth enough such that a 1–dimensional
nwrapping can be performed independently of the other two dimen-
ions; however, it is common that noise affects the wrapped signal, so,
n general, that assumption is not met. 

We propose a method based on a solid mathematical foundation that
roduces a field compatible with the data, without free parameters, that
s directly applicable to 𝑛 − dimensional fields, and that permits the de-
ermination of the correctness of the results it produces. In the following
ections, we describe the method and show tests and results. 

. Methods 

Although most instances of the unwrapping problem occur for phase
elds which are wrapped into [− 𝜋, 𝜋] radians, here we consider the gen-
ral case where the signal is wrapped into any real interval [ a, b ], where
nits depends on the particular application. In precise terms, we can
escribe the unwrapping problem of n -dimensional module signals as
ollows: consider an 𝑛 − dimensional lattice L of voxels and an unknown
eld h on L . What is available to us is a field h w which corresponds to h
rapped into the interval [ a, b ]. Given this, we want to recover the un-
rapped field h . The method presented here requires that the input data
re wrapped into [0,1]; a normalized unit-less range. To obtain this, one
ay transform the data h w into a new field w using: 

 ( 𝑢 ) = 

ℎ 𝑤 ( 𝑢 ) − 𝑎 

𝑏 − 𝑎 

or every voxel u ∈ L . For phase fields we have that 𝑎 = − 𝜋 and 𝑏 = 𝜋,

hen w ( u ) is defined as: 

 ( 𝑢 ) = 

ℎ 𝑤 ( 𝑢 ) + 𝜋

2 𝜋
. (1)

nce one finds from w an estimate �̂� for the unwrapped transformed
eld, one can recover an estimate ℎ̂ for the original field h using the

nverse transformation, which for phase fields is: 

̂
 ( 𝑢 ) = 2 𝜋�̂� ( 𝑢 ) − 𝜋. (2)

n what follows, we consider therefore the following problem: given the
ormalized wrapped field w ( u ) ∈ [0, 1], for u ∈ L , the task is to estimate
 field �̂� given by: 

̂ ( 𝑢 ) = 𝑤 ( 𝑢 ) + 𝑧 ( 𝑢 ) , (3)

here z must be a field of integers, so that �̂� is compatible with w . 
The difficulty here is that this problem does not have a unique solu-
ion since it is mathematically ill-posed [9,23,24] . To solve it, one must
ake some assumptions about g . What is usually done is to assume that
 is as smooth as possible. The strategy used by most used algorithms
n practice [8] , which we call the Path Unwrapping Algorithm (PUA),
onsists in following a set of paths of consecutive points 𝑝 1 , 𝑝 2 , … , 𝑝 𝑁 

n L such that ‖𝑝 𝑘 − 𝑝 𝑘 −1 ‖ = 1 for 𝑘 = 1 , 2 , … , 𝑁 . All these paths start
rom a seed point s 0 , so we set �̂� ( 𝑝 1 ) = 𝑤 ( 𝑝 1 ) = 𝑤 ( 𝑠 0 ) and find for each
onsecutive point the unwrapping integer z ( p k ) that makes the resulting
eld as smooth as possible along this path. This results in the following
pdate rule: 

̂ ( 𝑝 𝑘 ) = 𝑤 ( 𝑝 𝑘 ) + 𝑅 [ ̂𝑔 ( 𝑝 𝑘 −1 ) − 𝑤 ( 𝑝 𝑘 )] , (4)

here R [ · ] is the signed rounding operator: 𝑅 [ 𝑥 ] = 𝑠𝑖𝑔𝑛 ( 𝑥 ) ⋅ ⌊|𝑥 | + 0 . 5 ⌋,
here ⌊y ⌋ takes the integer part of the positive number y . Note that
 [ x ] finds the integer that is closest to | x | with the appropriate sign;

his implies that 

𝑅 ( 𝑥 ) − 𝑥 | < 0 . 5 . (5)

In general, for a given field w and a region Ω the result of the ap-
lication of (4) from a given seed point s 0 to a final point p N ∈ R will
epend on the path from s 0 to P N . If this is not the case and the result is
ath-independent (i.e., it is equal for all seed points and all final points),
e say that w is consistent in Ω. If this happens and one now subtracts

̂ ( 𝑝 𝑘 −1 ) from both sides of Eq. (4) and takes absolute values one obtains
rom (5) : 

�̂� ( 𝑝 𝑘 ) − �̂� ( 𝑝 𝑘 −1 ) | = | − ( ̂𝑔 ( 𝑝 𝑘 −1 ) − 𝑤 ( 𝑝 𝑘 )) + 𝑅 [ ̂𝑔 ( 𝑝 𝑘 −1 ) − 𝑤 ( 𝑝 𝑘 )] | < 0 . 5 . 

So that, along any path in a consistent region Ω

�̂� ( 𝑝 𝑘 ) − �̂� ( 𝑝 𝑘 −1 ) | < 0 . 5 . (6)

n important consequence of this is the following: 

roposition 1. If for all pairs r, s of neighboring points in L i.e., points

ith ‖𝑟 − 𝑠 ‖ = 1 , the original field g satisfies |𝑔( 𝑟 ) − 𝑔( 𝑠 ) | < 0 . 5 the results

f applying the PUA will not depend on the chosen paths. In this case, we

ay that the field g is barrier free and the field w is consistent (the proof is

resented in the appendix). 

The concept of barriers, that is, pairs of neighboring points r, s with
𝑔( 𝑟 ) − 𝑔( 𝑠 ) | ≥ 0 . 5 , is similar to the one used in branch cut methods [8] .
f the field g contains barriers, and these barriers are open, in the sense
hat there are paths between r and s that do not cross any barriers while
ther paths cross at least one, the field w will be inconsistent and the
esults of the PUA will not be path-independent, since any path that goes
hrough a barrier will give different results from paths that go around it.
s a result of this, the field �̂� produced by the PUA will contain spurious
arriers that in general will not coincide with the actual barriers in g . In
act, a single pair of barrier voxels in g may cause the PUA to propagate
he error and produce incorrect unwrapping results in large regions of
 . Note that if g contains open barriers, the desired �̂� should also contain
hem and they should be as close as possible to those of g . 

In real scenarios, barriers may be introduced in g not only by discon-
inuities that may be present in the actual signal, but also by noise in
he sensing process, so that dealing with inconsistent wrapped data is
n important problem. 

The general idea of the method proposed here, which we call Max-
mum Smoothness Consistent Unwrapping (MSCU) is to find, in a first
tage, a set C ⊆L of voxels which is as large as possible and where w is
onsistent, so that the PUA produces results which are independent of
he path chosen. Once this is done, in a second stage one fills the com-
lement of C (the zone with inconsistencies) with a technique that we
all dilation unwrapping, which produces as an end result a field �̂� that
s compatible with w and whose barriers are as close as possible to those
f g . 

To derive the method, first one needs to characterize the region C
here w is consistent. As explained above, this region is characterized
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Fig. 1. An scheme of the path that follows the inconsistency condition in (7) . 
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y the fact that for all closed paths that lie in C i.e., paths with 𝑝 1 = 𝑝 𝑁 

or all possible p 1 ∈ C and N , one finds �̂� ( 𝑝 𝑁 

) = �̂� ( 𝑝 1 ) after applying
4) . This condition however is prohibitively expensive to test. In the 2-
imensional case a simpler condition is to test only closed paths with 4
oints that form a square one-pixel wide with one corner at the pixel u
8] . This condition is equivalent to the following: 

4 

 =1 
𝑅 [ 𝑤 ( 𝑝 𝑘 ) − 𝑤 ( 𝑝 𝑘 +1 )] = 0 (7)

here 𝑝 5 = 𝑝 1 = 𝑢 as illustrated in Fig. 1 . In the case of 3 or more dimen-
ions this condition should be checked for all possible planes obtained
y taking different pairs of dimensions at a time; in 3 dimensions for
xample, for the 𝑥 − 𝑦, 𝑥 − 𝑧 and 𝑦 − 𝑧 planes. 

If (7) is not met, we say that there is a local inconsistency in the 4
eighboring coplanar voxels used to compute (7) . 

Even if locally inconsistent voxels are removed, however, the re-
ion may remain inconsistent because local inconsistencies are gener-
ted only at the end points of open barriers, and the rest of the barriers
ay be aliased by the wrapping operator and will remain hidden and

mpossible to detect. The proposed strategy then is to erode the consis-
ent region until the complete barriers - whose location is unknown - are
overed. To do this, one needs a computationally efficient way to deter-
ine if w is consistent in any path-connected region. This is obtained by

he following: 

roposition 2. The wrapped field w is consistent in a path-connected region

 if and only if the field �̂� - obtained by applying the PUA in this region from

 seed point s 0 ∈ C and following paths that lie in C - is barrier-free (the

roof is presented in the appendix). 

The idea of the method then, is to start with a candidate consis-
ent region which is equal to the complete lattice excluding the pixels
here local inconsistencies have been detected and apply the PUA in

his region. One can then test for the consistency of this region using
roposition 2 and if this test fails, incrementally erode it and repeat the
nwrapping until the barrier-free condition of the unwrapped field is
atisfied and one can proceed to the next stage. The first stage of the
rocess therefore is: 

Stage 1 

1. Find the set of voxels with local inconsistencies and set C as its com-
plement, that is, the voxels with no local inconsistencies. Use (7) to
find the local inconsistencies. 

2. Apply the PUA in C to find a field �̂� ( 𝑢 ) , 𝑢 ∈ 𝐶. 
3. Test if w in C is consistent by verifying if �̂� is barrier-free in C . 
4. If w is not consistent, obtain a new region C by applying to it an

incremental erosion operator E (see [25] ), i.e., set C ≔ E [ C ], and
repeat from step 2 
5. End. w  
When this process is completed, we know that the unwrapping is
onsistent in the resulting region C , so that the local and global incon-
istencies are confined to the set C 

c (the complement of the resulting
 ). 

Now we describe these steps in more detail: To find a field �̂� in step 2,
e propose the following simple algorithm which unwraps w in a path-

onnected region C from a seed point s 0 ∈ C . It uses a queue  of pixels
nd an auxiliary field m which indicates which pixels 𝑓 have already
een computed. Let  ( 𝑟 ) = { 𝑠 ∶ ||𝑟 − 𝑠 || = 1} ; the detailed algorithm for
tep 2 is as follows: 

{ 

1. Set  = ∅ (the empty queue); 
2. Set 𝑚 ( 𝑟 ) = 0 and �̂� ( 𝑟 ) = 0 for all r ∈ L ; 
3. Set 𝑚 ( 𝑠 0 ) = 1 ; �̂� ( 𝑠 0 ) = 𝑤 ( 𝑠 0 ) ; Push s 0 into  

4. While  ≠ ∅ do: 
(a) Get r from  ; 
(b) For all voxels 𝑠 ∈  ( 𝑟 ) such that s ∈ C and 𝑚 ( 𝑠 ) = 0 

(1) Set �̂� ( 𝑠 ) = 𝑤 ( 𝑠 ) + 𝑅 [ ̂𝑔 ( 𝑟 ) − 𝑤 ( 𝑠 )] ; 
(2) Set 𝑚 ( 𝑠 ) = 1 ; 
(3) Push s into  

 

Note that in this algorithm many paths are considered at the same
ime, all with the same starting point s 0 , and with their current end-
oints stored in  , which are followed until all points in �̂� are correctly
nwrapped. 

For step 3, the test to determine if w is consistent in C is obtained
irectly from Proposition 2 : 

max 
𝑟,𝑠 ⟩∈𝐶 |�̂� ( 𝑟 ) − �̂� ( 𝑠 ) | < 0 . 5 , (8)

here ⟨r, s ⟩ denotes all pairs of neighboring points. The incremental
rosion operator E that is used in step 4 is the morphological erosion
25] using as structural element an 𝑛 − dimensional sphere with unit ra-
ius: 

[ 𝐶] = { 𝑟 ∈ 𝐶 ∶  𝑟 ⊂ 𝐶} . 

Once these steps are completed and the test (8) is passed, one pro-
eeds to the second stage which consists in progressively dilating the
egion C (see [25] ), extending the field �̂� ( 𝑢 ) , 𝑢 ∈ 𝐶 using Eq. (4) at each
tep, so that the solution in C is propagated until the complete image is
nwrapped. To do this, if there is more than one voxel in C from which
he unwrapped field may be propagated to a neighboring voxel r ∈ C 

c ,
e select the one that maximizes the smoothness i.e., the one that min-

mizes the absolute difference between the new unwrapped value and
hat of the corresponding neighbour. The detailed algorithm for this
tage is as follows: 

Stage 2. Dilation and Propagation 

1. Find the set B of boundary pixels of C 

c : 

𝐵 = { 𝑟 ∈ 𝐶 

𝑐 ∶  𝑟 

⋂
𝐶 ≠ ∅} 

2. For each pixel r ∈ B do: 
(a) Find the pixel 𝑢 ∗ ∈  𝑟 

⋂
𝐶 such that |𝑤 ( 𝑟 ) + 𝑅 [ ̂𝑔 ( 𝑢 ∗ ) − 𝑤 ( 𝑟 )] −

�̂� ( 𝑢 ∗ ) | is as small as possible. 
(b) Set �̂� ( 𝑟 ) = 𝑤 ( 𝑟 ) + 𝑅 [ ̂𝑔 ( 𝑢 ∗ ) − 𝑤 ( 𝑟 )] 

3. Set 𝐶 ∶= 𝐶 

⋃
𝐵

4. if C 

c ≠ ∅ go to step 1. 
5. End. 

n this algorithm we use  𝑟 as the 𝑛 − dimensional sphere with unit ra-
ius with center r . 

Note that by construction the algorithm will locate the barriers in
̂ approximately at the medial axes (morphological skeletons) of the
nconsistent connected regions that constitute C 

c so that, although the
ocation of the original barriers of g cannot be uniquely determined from
 , the only information being that their end points are located at the



J.C. Estrada, A. Ramirez-Manzanares and L. Concha et al. Optics and Lasers in Engineering 130 (2020) 106087 

Fig. 2. An illustrative synthetic example with dimensions 

256 × 256 pixels. (a) Original unwrapped field. (b) Wrapped 

data. (c) Unwrapped result using the algorithm in [14] . (d) 

Unwrapped result using the algorithm in [13] . (e) Unwrapped 

result using the method presented here. The units here are ra- 

dians. 
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1

ocal inconsistencies of w , the proposed method will find the shortest
ossible barriers in the compatible field �̂� which also end at the local
nconsistencies. 

In summary, the complete algorithm for the MSCU method is as fol-
ows: 

Complete algorithm 

1. Transform the given wrapped data into the interval [0,1] using
Eq. (1) ; 

2. Run Stage 1 of the process to find the largest possible region C where
the transformed wrapped phase w is consistent; 

3. Using Stage 2 , progressively dilate C propagating the solution in C 

c 

until the complete unwrapped field �̂� is computed; 
4. Find the final estimated unwrapped field ℎ̂ using Eq. (2) ; 

Note that if the original unwrapped field is barrier-free, the region C
ound in Stage 1 will coincide with the complete lattice, so that neither
rosion nor dilation will be necessary and MSCU will perform a perfect
econstruction in one step. It should be noted that in this case any one
f the traditional path following algorithms will exhibit an equivalent
erformance, since the propagated solution found by the PUA algorithm
ill not depend on the path. However, if there are barriers present in the
riginal field, traditional path following algorithms will fail and spuri-
us discontinuities will appear in the solution at places that depend on
he particular unwrapping path, whereas MSCU will produce the correct
olution. 

. Experiments 

We designed an illustrative and simple synthetic example that con-
ains barriers along open curves, a scenario that proves difficult for com-
only used unwrapping methods, and we used it to study the perfor-
ance of MSCU and other published methods. In particular, we compare

he performance of MSCU with two of the most widely used unwrapping
ethods for which the authors provide the corresponding codes, so that

mplementation issues are avoided. This example field appears in panel
a) of Fig. 2 and consists of two ramps of opposite slope at the cen-
er of the image which rise from a constant plane at height zero to a
op plane of an arbitrary height 4.015 𝜋 radians. This was done so that
he height differences across the barriers appear aliased in the wrapped
eld. The image was then corrupted by additive white Gaussian noise
ith 0 mean and variance equal to 0.12 𝜋 radians. In panel (b) the corre-
ponding wrapped image is presented. Note that the barriers produced
y the height differences between the top and the bottom planes in (a)
ppear aliased in the wrapped field. This example was contrived to high-
ight the weak points of existing algorithms, but the situation it portrays
ften occurs in practice, specially in noisy and/or high gradient wrapped
elds. Panels (c) through (f) present the unwrapped phase recovered us-

ng different methods. 
Panel 2 (c) shows the result obtained with the algorithm in [14] in

hich the fields of horizontal and vertical first order wrapped differ-
nces are integrated following a path guided by the magnitude of the
econd order wrapped differences, so that the unwrapping is performed
rst along regions with the least possible variation. The problem is that

f the barriers in the original field are aliased in the wrapped field, as
n this example, the first and second order differences across them may
e small, so that the unwrapping paths may cross the barriers at early
tages and produce erroneous results as the one shown here. The re-
uired time for this method is 26.6 microseconds in a computer with an
ntel(R) Core(TM) i5-6300U-2.40 GHz (the same computer was used to
easure the time for all the following 2D experiments). 

Panel 2 (e) shows the result obtained using [13] , which is one of
he most recent branch-cut algorithms published. In this approach local
nconsistencies are detected (see Fig. 3 (a)) and connected with a branch-
ut that cannot be crossed by the unwrapping paths. However, finding
he right connections between local inconsistencies is not an easy task
ecause there may be many different possible connection combinations.
n [13] they are connected based on their proximity, but in this case,
his fails to establish the appropriate branch cuts along the true barriers.
n particular, inconsistencies labeled as 1 and 2 in Fig. 3 (a) and those
abeled as 3 and 4 are connected, but not those labeled as 2 and 3 as it
hould be. As a result, although the ramps and top plane are correctly
nwrapped, the method introduces spurious jumps in the constant plane
t height zero, so that the complete field is not correctly unwrapped. The
equired time for this method is 12.6 microseconds. 

Finally, panel 2 (f) presents the result obtained with MSCU, the
ethod presented here. In this case the region without local inconsisten-

ies (see Fig. 3 (a)) is eroded until the test (8) is satisfied (see Figs. 3 (b)
nd (c)), and then the dilation and propagation procedure is applied to
btain the final result which as one can see is practically indistinguish-
ble from the ground truth, except for an additive constant and small
rrors close to the boundaries. The required time for our proposal is
1.66 microseconds. 
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Fig. 3. Details of the operation of MSCU unwrapping in the ex- 

ample of Fig. 2 . (a) Detected local inconsistencies (red dots). 

(b) The eroded consistent region appears in white. (c) Un- 

wrapped phase in the consistent region. The result in Fig. 2 (f) 

is obtained after the dilation and propagation procedure de- 

scribed in the text. The units here are radians. (For interpreta- 

tion of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 4. Experimental wrapped phase from speckle in- 

terferometry. The size of the image is 482 × 641 pix- 

els. (a) Wrapped phase, (b) Local inconsistencies, (c) 

Consistent region after erosion, and (d) Final result. 

Dynamic range of phase images × 2 𝜋 represent radi- 

ans. 
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In the next example, we unwrap the phase that is obtained from
n experiment that uses the electronic speckle interferometry tech-
ique (ESPI). In Fig. 4 (a) we show the wrapped phase, in Fig. 4 (b) we
how the local inconsistencies which are introduced by speckle noise; in
ig. 4 (c) the consistent region that results from the erosion process and
n Fig. 4 (d), the final result produced by MSCU. The required time for
ur proposal is 448.1 microseconds. It is important to note that in this
xample, simply masking out the local inconsistencies and applying the
UA algorithm will not give correct results, which indicates that con-
gurations with aliased open barriers such as the ones presented in the
ynthetic example above are also present in this case. 

The next experiment presents the application of our methodology to
he problem of unwrapping of 3D MR magnetic susceptibility weighted
maging (SWI-MR) phase data. This type of images have several clini-
al applications; for example, it is known that magnetic susceptibility is
ltered by the accumulation of iron, and has been demonstrated to be
bnormal in patients with certain neurodegenerative diseases [26,27] .
usceptibility-weighted imaging is also used in the clinic to image ves-
els, hemorrhages, and calcium deposits in the brain, and has been ex-
ended for quantification purposes as quantitative susceptibility map-
ing (QSM) [28] . However, an imperfect magnetic field induces fur-
her phase changes and high phase gradients that contaminate the in-
omogeneities caused by the phenomenon being studied [29] , and is
he major hurdle preventing accurate interpretation of these imaging
ethods. To account for these effects without introducing additional

rtifacts it is important to have an accurate, compatible and truly 3D
nwrapping of the field. In the experiment presented here, written in-
ormed consent was obtained from the volunteer participating in this
tudy. Images were acquired in one healthy adult female volunteer us-
ng a Philips Achieva TX 3.0 T scanner and a 32-element head coil.
WI-MR was acquired using an axial 3-dimensional gradient echo se-
uence (TR = 19.9 ms; TE = 28 ms; 𝛼= 10 o ; FOV = 220 × 180.5 × 99 mm 

3 ,
eft-right phase-encoding direction). Acceleration using SENSE [30] was
mplemented in the phase ( × 2.5) and slice ( × 2) dimensions. The high–
esolution volume consists of 330 slices with 512 × 512 voxels each. 3D
hase unwrapping was applied to the wrapped-phase volume. 

A detailed 3D view of the results on the volume are shown in Fig. 5 ,
hich shows axial, coronal and sagittal slices of the results around the
iddle of the brain with center in the coordinates (256,261,170). We
resent the input and output fields in false color map, as this repre-
entation enhances the conspicuity of protuberances in the unwrapped
eld that indicate a change in the anatomy of the subject. First row



J.C. Estrada, A. Ramirez-Manzanares and L. Concha et al. Optics and Lasers in Engineering 130 (2020) 106087 

Fig. 5. Multi-slice visualization (with the columns cor- 

responding to the axial, coronal and sagittal views) for 

the SWI-MRI phase data. We show in the first row the 

input wrapped data (dynamic range: [− 𝜋, 𝜋] ); in the 

second row the map of local inconsistencies; in the 

third row the eroded consistent region (in white) and 

in the fourth row the unwrapped field estimated by 

MSCU (dynamic range: [0, 26 𝜋]). 
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hows the input (wrapped) data, the map of the local inconsistencies is
hown in second row. The eroded consistent regions are shown in the
hird row. Finally the unwrapped phase given by our method is shown
n the bottom of the Figure. Note the conspicuous phase gradients seen
n the input wrapped phase maps near air-tissue interfaces, such as the
rontal pole, and the basal aspect of the temporal lobes (red arrows),
hat are correctly unwrapped and appear smooth in the MSCU results
n the 4–th row. The 3-D ANSI-C implementation on an Intel Core i7-
771 CPU running at 3.5 GHz took around 19 s to process the complete
olume. 

. Discussion and conclusions. 

We have presented an unwrapping algorithm for fields on any num-
er of dimensions. For most applications, 2 or 3 dimensions are suf-
cient, but the method presented here is directly applicable to higher
imensions as well. The method is simple to implement and compu-
ationally efficient, note that the required time in our experiments is
maller with respect to the required time by the previously proposed
ethods we compare with. The MSCU method presented here has the

ollowing features: 
1. It permits the estimation of a region C where the given unwrapped
phase w is consistent. 

2. Once this is found, it finds an estimated unwrapped field that is com-
patible with w everywhere and that in C is as smooth as possible. 

3. In the complementary region C 

c it finds a field that is as close as
possible to a smooth extension of f in C . Note that in this region f may
be neither smooth (it may contain discontinuities) nor consistent. 

4. The procedure is simple to implement and computationally efficient
(about 19 seconds in a full 3-D implementation on a 3.5 GHz pro-
cessor for the 3D volume in Fig. 5 , i.e. approximately 0.06 seconds
for each 512 × 512 slice). 

5. Although this paper is focused on phase fields wrapped into the inter-
val [− 𝜋, 𝜋] the method is directly applicable to any other wrapping
interval. 

MSCU finds a solution to the ill-posed unwrapping problem that is
aximally smooth and that is consistent in a region which is as large

s possible. The method has no free parameters to adjust since it uses a
ata–dependent rigorous criterion to determine the smallest number k ∗ 

f erosion operations, applied to the region without local inconsisten-
ies, that are needed to define C . 
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Finally, note that our method also may provide a data–dependent
easure for the reliability of a solution, namely the ratio 𝜌 of the number

f voxels in the consistent region C obtained after the erosion operation
o the total number of voxels in the region of interest: if 𝜌 is close to
ero, it means that the original field contains discontinuities that are
oo extensive, so that C is too small for the smooth extension of f to be
 good approximation to the solution, whereas values of 𝜌 close to 1
ndicate a highly reliable solution. Thus, 𝜌 is defined as: 

= 

𝐷{ 𝐶} 
𝐷{ ̂𝑔 } 

, 

here D { C } and 𝐷{ ̂𝑔 } are the number of voxels/pixels in region C and
mage �̂� , respectively. For example, 𝜌 is equal to 0.4826, 0.8135, and
.87 for experiments in Figs. 3 , and–5 , respectively. 
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ppendix A 

In this appendix we present the proofs of the Propositions 1 and
 presented in the text. 

roposition 1. If for all pairs r, s of neighboring points in L, i.e., points

ith ‖𝑟 − 𝑠 ‖ = 1 , the original field g satisfies |𝑔( 𝑟 ) − 𝑔( 𝑠 ) | < 0 . 5 the results of

pplying the PUA will not depend on the chosen paths. 

To see this, note that if �̂� ( 𝑝 𝑘 −1 ) = 𝑔( 𝑝 𝑘 −1 ) then �̂� ( 𝑝 𝑘 ) = 𝑔( 𝑝 𝑘 ) because since

 is compatible with w and 𝑅 [ 𝑔( 𝑝 𝑘 −1 ) − 𝑔( 𝑝 𝑘 )] < 0 . 5 , both �̂� ( 𝑝 𝑘 ) and g ( p k ) are

btained by adding to w ( p k ) the integer that makes |𝑔( 𝑝 𝑘 −1 ) − 𝑔( 𝑝 𝑘 ) | as small

s possible. Assuming 𝑔( 𝑠 0 ) = 𝑤 ( 𝑠 0 ) we get by induction that �̂� ( 𝑝 𝑁 

) = 𝑔( 𝑝 𝑁 

)
ndependently of the intermediate points of the path. 

roposition 2. The wrapped field w is consistent in a path-connected region

 if and only if the field �̂� - obtained by applying the PUA in this region from

 seed point s 0 ∈ C and following paths that lie in C - is barrier-free. 

To prove it, we note the fact that if �̂� is barrier-free then w is consistent;

his is established using the arguments given in the proof of Proposition 1 .

onversely, to show that if w is consistent then �̂� must be barrier-free, consider

ny two neighboring points r, s ∈ C and the path used to get from s 0 to r.

ince we are assuming that w is consistent we may add the point s at the end

f this path to get �̂� ( 𝑠 ) , and from (6) 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.optlaseng.2020.106087 . 
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