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A B S T R A C T

Micro-architectural characteristics of white matter can be inferred through analysis of diffusion-weighted mag-
netic resonance imaging (dMRI). The diffusion-dependent signal can be analyzed through several methods, with
the tensor model being the most frequently used due to its straightforward interpretation and low requirements
for acquisition parameters. While valuable information can be gained from the tensor-derived metrics in regions
of homogeneous tissue organization, this model does not provide reliable microstructural information at crossing
fiber regions, which are pervasive throughout human white matter. Several multiple fiber models have been
proposed that seem to overcome the limitations of the tensor, with few providing per-bundle dMRI-derived
metrics. However, biological interpretations of such metrics are limited by the lack of histological confirmation.
To this end, we developed a straightforward biological validation framework. Unilateral retinal ischemia was
induced in ten rats, which resulted in axonal (Wallerian) degeneration of the corresponding optic nerve, while the
contralateral was left intact; the intact and injured axonal populations meet at the optic chiasm as they cross the
midline, generating a fiber crossing region in which each population has different diffusion properties. Five rats
served as controls. High-resolution ex vivo dMRI was acquired five weeks after experimental procedures. We
correlated and compared histology to per-bundle descriptors derived from three methodologies for dMRI analysis
(constrained spherical deconvolution and two multi-tensor representations). We found a tight correlation between
axonal density (as evaluated through automatic segmentation of histological sections) with per-bundle apparent
fiber density and fractional anisotropy (derived from dMRI). The multi–fiber methods explored were able to
correctly identify the damaged fiber populations in a region of fiber crossings (chiasm). Our results provide
validation of metrics that bring substantial and clinically useful information about white-matter tissue at crossing
fiber regions. Our proposed framework is useful to validate other current and future dMRI methods.
1. Introduction

Magnetic resonance imaging (MRI) provides different contrast
mechanisms that convey important information regarding tissue. Of
particular interest in the quest for biomarkers is the ability to non-
invasively infer the architectural and cellular characteristics of tissue,
as a means for detection and long-term follow-up of disease-related ab-
normalities. Brain imaging has seen a host of quantitative methods to
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query tissue composition (Cercignani et al., 2018). The common de-
nominator of many methods is their capacity to resolve information
beyond their spatial resolution limit. Diffusion-weighted MRI (dMRI), in
particular, has gained great traction for the study of cerebral white
matter and, aided by tractography algorithms that enable the depiction of
white matter bundles, has enabled the field of anatomical brain con-
nectivity (Sporns, 2011; Dell’Acqua and Catani, 2012)s. While the study
of trajectories of large white matter pathways provides valuable
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Fig. 1. Biological model. a: The ventral aspect of a fixed rat brain shows the two
optic nerves affixed to the basal aspect of the olfactory bulbs, and meeting at the
midline to form the optic chiasm (dotted rectangle). b: Schematic representation
of the retinal ischemia model, which induces Wallerian degeneration of axons
traveling through one optic nerve (orange). The contralateral optic nerve re-
mains intact (blue). At the level of the optic chiasm, the majority of axons cross
the midline, thus providing an anatomical region of known fiber crossings where
a single fiber population has been affected.

G. Rojas-Vite et al. NeuroImage 201 (2019) 116013
information that can be used in the clinic (e.g., for surgical planning), a
wealth of information is contained within each image voxel (Concha,
2014; Paus, 2018; Dyrby et al., 2018).

The self-diffusion of water molecules in tissue is modulated by the
barriers that molecules encounter over a period of time (Beaulieu, 2002).
The three-dimensional water diffusion profile is queried through dMRI
and mathematical models are used to provide a compiled view of the
dMRI signal at each voxel. The diffusion tensor (Basser et al., 1994) is a
simple and intuitive model that has proven useful for the identification of
features of white matter bundles. Several studies have provided direct
evidence that tensor metrics are related to histological characteristics in
normal and affected white matter (Leergaard et al., 2010; Concha et al.,
2010; Sierra et al., 2015; Khan et al., 2015; Salo et al., 2018). For
example, axonal beading or fragmentation cause reductions of diffusivity
parallel to the axons (λk ¼ λ1) (Budde et al., 2007; Song et al., 2003; Liu
et al., 2013), whereas increased perpendicular diffusivity (λ? ¼ ðλ2 þ λ3Þ
=2) can reflect one or several mechanisms, including loss of axons,
changes in average axonal diameter, loss of fiber coherence, fiber
dispersion, or myelin loss (Song et al., 2003; Tyszka et al., 2006; Budde
et al., 2007; Concha et al., 2010; Klawiter et al., 2011). In spite of its
ambiguities, this intuitive interpretation (and low data acquisition re-
quirements) propel the tensor model to this day (O’Donnell and Westin,
2011). One of the main assumptions made in the tensor model is the
existence of a single dominant fiber population within any given voxel.
However, the majority of human white matter contains more than one
fiber population (Jeurissen et al., 2013). The tensor model cannot pro-
vide reliable information in these areas and is (at its best) not useful, or
(at its worse) misleading (Tournier et al., 2011; Jones et al., 2013).

Alternatives to the tensor model abound (Alexander, 2005; Tournier
et al., 2011; Panagiotaki et al., 2012; Zhang et al., 2012; Daducci et al.,
2014, 2015). Some methods use diffusion metrics directly as biomarkers
of tissue characteristics, whereas others attempt to build specific bio-
physical models for tissue parameters (Jespersen, 2018). In general, they
aim to resolve the correct number and orientation of axonal populations
and, ideally, provide per-bundle fiber characteristics to improve tissue
microstructure estimation or tractogram construction for brain connec-
tivity analyses (Dell’Acqua and Catani, 2012). It has been shown that
advanced dMRI models provide information about bundle orientation in
fiber crossing regions, which corresponds to quantitative histology
(Leergaard et al., 2010; Budde and Annese, 2013). While numerical
simulation studies have provided insight into the validity of multi–fiber
dMRI reconstruction methods (Alexander, 2005), direct validations with
ground-true methods (i.e., histology) are needed for appropriate bio-
logical interpretations.

In this work we show the ability of a subset of multi–fiber recon-
struction methods to capture histological features for individual fiber
bundles in fiber crossing regions. By extending the well-known rodent
model of unilateral retinal ischemia (Adachi et al., 1996), which has been
extensively used to validate dMRI methods (Song et al., 2003; Sun et al.,
2008), we show that dMRI can correctly identify a single population of
degenerated axons from a population of intact axons within the optic
chiasm.

2. Methods

2.1. Animal preparation

We used the retinal ischemia model to induce axonal (Wallerian)
degeneration of axons emanating from the retina towards the brain
(Adachi et al., 1996; Song et al., 2003). Ischemia was induced unilater-
ally, thus providing one injured and one intact nerve for each animal.
Optic chiasm analysis allows for the evaluation of crossing fibers, as
axons from each eye cross the midline at this level. The proportion of
axons that cross the midline is much larger in rodents than in humans,
being over 90% in the former, and roughly half in the latter (Jeffery and
Erskine, 2005). Thus, unilateral retinal ischemia results in degeneration
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of practically half of the total number of axons within the chiasm (Fig. 1).
Fifteen adult female Wistar rats were studied (age 16–18 weeks; weight:
354 � 59 g); axonal degeneration was induced in ten, and five served as
controls. To cause unilateral retinal ischemia, animals were anesthetized
with a ketamine/xylazine solution administered I.P. and then placed in a
stereotaxic frame. A 32-gauge needle was inserted into the anterior
chamber of the right eye of each rat, and connected to a reservoir with
saline solution that was elevated until an in-line pressure monitor indi-
cated 120mmHg (higher than systolic pressure); this pressure was
maintained for 90min. Retinal pallor was evident throughout the
experiment, confirming lack of retinal blood flow. After this period the
cannula was carefully extracted and topical antibiotics and analgesics
were administered. Animals were returned to their cages to recover with
ad libitum access to food and water. Five weeks after treatment, animals
were deeply anesthetized I.P. with ketamine/xylazine and intracardially
perfused with 4% paraformaldehyde (PFA) and 2.5% glutaraldehyde
with gadobutrol, a Gadolinium-based contrast agent (0.2mM; Gadovist,
Bayer) (D’Arceuil et al., 2007). Brains were carefully extracted leaving
the optic nerves and chiasm intact. To prevent the optic nerves from
floating, their most distal portions were attached to the ventral aspect of
the olfactory bulbs using cyanoacrylate, and specimens were placed in
PFA at 4 �C until imaging. All procedures were performed in compliance
with ARRIVE guidelines, and the study was approved by the Bioethics
Committee of the Institute of Neurobiology, Universidad Nacional
Aut�onoma de M�exico (protocol 096.A).
2.2. Imaging

Brains were scanned using a 7 T Bruker Pharmascan 70/16 with
760mT/m maximum gradient amplitude using a combination of a
72mm inner-diameter circularly polarized radio-frequency coil (for
transmission), and a rat head 2� 2 surface array rat coil (receive-only).
The specimens were taken out of refrigeration 2 h before imaging, placed
in a plastic tube and immersed in perfluoropolyether (Fomblin Y, Sigma-
Aldrich), oriented such that the chiasm and optic nerves were in close
proximity to the receiving coil. A B0 map was obtained and used to aid
automatic shimming before dMRI acquisition. Images were acquired
with 125� 125� 125 μm3 resolution using a 3-dimensional echo-planar
acquisition with 8 segments (TR/TE¼ 250/21ms; NEX¼ 1). We ac-
quired diffusion-weighted images (DWI) in 80 different directions, each
with a b value of 2000 and 2500 s/mm2. (δ/Δ¼ 3.1/10ms), and 20 non-
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diffusion weighted images. Total scanning time was 15 h, and scanning
was performed at room temperature (21 �C) with fluctuations of less than
1.5 �C (measured twice with an MRI-compatible thermometer [Small
Animal Instruments, Inc., Stony Brook, NY] placed inside the scanner
bore). Imaging sessions were performed 24 � 21 (range 2–63) days after
intracardiac perfusion, with specimens kept in PFA at 4 �C during this
period. After scanning, specimens were returned to PFA and refrigerated
until preparation for histology.

2.3. Analysis of dMRI

To compute dMRI-based microstructure estimators, we used three
different modern approaches: constrained spherical deconvolution (CSD)
(Tournier et al., 2011), multi-resolution discrete search (MRDS) (Coro-
nado-Leija et al., 2017), and distribution of anisotropic microstructural
environments (DIAMOND) (Scherrer et al., 2016). CSD is currently one of
the most widely used multi–fiber methods, and uses a fixed response
function to explain dMRI signals. The multi-tensor model solved by
MRDS is the direct extension to the diffusion tensor, providing related
per-bundle estimators. DIAMOND goes one step further by adding
dispersion parameters and an isotropic compartment in its formulation.
No prior information was provided to the methods about tissue orien-
tation or characteristics. Model fitting was performed voxel-wise (i.e., no
spatial smoothness or spatial coherence was imposed).

2.3.1. Pre-processing
Images were first denoised (Veraart et al., 2016), then bias field in-

homogeneities were corrected. The bias field was estimated using the N4
algorithm (Tustison et al., 2010) on the average b ¼ 0 s/mm2 volume,
and the resulting correction factor applied to all volumes. Finally, geo-
metric distortions induced by eddy currents, as well as image drift during
the long acquisition period, were corrected by registering each volume to
the average b ¼ 0 s/mm2 volume using a linear transformation with 12
degrees of freedom using tools available in the fsl suite (Jenkinson et al.,
2002).

2.3.2. CSD
Voxels with a single fiber population within a manually-defined re-

gion encompassing the intact optic nerve(s) were identified for each
specimen using an automated approach (Tournier et al., 2013) (number
of single-fiber voxels identified¼ 104.4 � 40.8). The median b ¼ 0
s/mm2 intensity of those voxels was used to normalize the dMRI signal.
These white matter voxels were complemented by automatic identifica-
tion of two samples of voxels containing either gray matter or
cerebro-spinal fluid (CSF), using the algorithm described by Dhollander
et al. (2016). Next, response functions were estimated for white matter,
gray matter and CSF from the dMRI signal within these three voxel
samples. The resulting response functions were averaged across all ani-
mals to obtain a single response function for each tissue type, which was
used to estimate the fiber orientation distrubutions (FODs) for each an-
imal (Raffelt et al., 2012) using the method proposed by Jeurissen et al.
(2014). In this work we focused on the FODs derived from white matter
and report only the results using the corresponding response function.
Voxel-wise FOD complexity was estimated (Riffert et al., 2014).
Per-bundle (i.e., fixel-wise) metrics were derived by FOD segmentation
(Smith et al., 2013), from which we calculated apparent fiber density
(AFD), peak AFD, and dispersion (Raffelt et al., 2012; Dell’Acqua et al.,
2013; Riffert et al., 2014)).

2.3.3. MRDS
We computed parameters of the multi-tensor model at single-fiber

and crossing-fiber regions using the multi-resolution discrete search
(MRDS) fittingmethod (Coronado-Leija et al., 2017). This state-of-the-art
fitting technique provides robust estimates of specific intra-voxel diffu-
sion descriptors, per-bundle volume fractions (α), orientations, and axial
and radial diffusivities (λk and λ?, respectively). The recovered diffusion
3

information allows, in principle, to detect diffusion abnormalities of in-
dividual fiber populations. For each animal, the initial response function
(a radially symmetric tensor shape) was computed by averaging the
single-tensor eigenvalues of voxels that likely contain a single bundle.
Single-fiber voxels were identified by fitting the single tensor model to all
voxels in a region of interest (ROI) delineated at the intact optic nerve(s),
fromwhich we computed fractional anisotropy (FA), and the average and
standard deviation of the mean diffusivity (μMD and σMD, respectively), as
well as the linear planar and spherical coefficients (λl, λp λs, respectively)
(Westin et al., 2002). The single bundle voxels were defined as those
having mean diffusivity (MD) in the range ½μMD � σMD; μMD þ σMD�,
FA�0.7, λl > λp and λl > λs. Later, an iterative refinement of the number
of tensors and their individual shapes and orientations is performed. The
final result (i.e., the number of tensors and their shapes that best repre-
sent the underlying dMRI signal in each voxel) is computed by a model
selection stage that used the ad hoc statistical F-test for nested models
(see Coronado-Leija et al. (2017) for further details). For each bundle, we
report FA, MD, λk, λ?, and compartment size (α).

2.3.4. DIAMOND
We evaluated the DIAMOND (distribution of anisotropic microstruc-

tural environment in diffusion imaging) approach which models the
diffusion arising from each fiber using a continuous, peak-shaped, sta-
tistical distribution of diffusion tensors (Scherrer et al., 2016). This al-
lows modeling of both the average fiber 3-D diffusivity and its
microstructural heterogeneity, and accounts for the
non-monoexponential decay in tissues. DIAMOND has been shown to be
a good predictor of the diffusion signal (Ferizi et al., 2017) and can be
seen as an extension of the multi-tensor model, which is a DIAMOND
model with infinitely concentrated tensor distributions representing
purely homogeneous compartments. DIAMOND is able to capture vari-
ations around the average diffusivity and is expected to better estimate
the average diffusivity itself.

Model selection to determine the number of fibers at each voxel was
achieved using the Akaike criterion (Akaike, 1974). The statistical dis-
tribution of tensors was chosen to be asymmetric to model decoupled
axial and radial heterogeneity (Scherrer et al., 2017), with a
freely-diffusing compartment with a fixed Diso ¼ 2:0668� 10�3mm2=s,
for which its isotropic fraction fiso was estimated. Bundle-specific diffu-
sivities were calculated by estimating the eigenvalues of the expectation
of each distribution which is a tensor that represents the average
compartment-specific diffusivity. Metrics were derived for each fiber
bundle, namely FA, MD, λk, λ?, α, and heterogeneity indices for λk and
λ?(λkHEI and λ?HEI , respectively).
2.4. Histology

2.4.1. Tissue preparation
Following dMRI acquisition, the specimens were returned to PFA

until processing (time between dMRI and tissue preparation was 47 � 29
[range 11–118] days). The optic nerves and chiasm were separated from
the brain to proceed with histological preparation. Samples were stained
with Osmium tetraoxide, then washed with phosphate buffered saline
(0.1M) and dehydrated with acetone in a gradient of concentrations (60,
70, 80 and 90%) until absolute acetone. After, tissue was embedded in a
2:1 epoxy resin/acetone solution for approximately 18 h. For polymeri-
zation, samples were placed in a mold with epoxy resin and kept at 60 �C.
Optic nerves were sectioned (500 nm thick) perpendicular to their long
axis, whereas the optic chiasm was sagittally sectioned at the midline.
Each section was stained with a solution of toluidine blue and sodium
borate (both 0.5%) to continue with observation and photomicrographic
acquisition using an optical microscope. For illustrative purposes,
selected specimens underwent electron microscopy, using silver sections
at a nominal thickness of 70 nm; these sections were imaged with a JEOL
1010 electron microscope operated at 80 kv.
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2.4.2. Quantitative evaluation
After staining optic nerve sections, we took photomicrograph tiles

using a vertical Zeiss Axio Imager microscope with a motorized stage at
63�magnification. Illumination, contrast, focus and exposure were
adjusted for every frame. Tiles were stitched with the “Grid/collection
stitching” plugin (Preibisch et al., 2009) available in Fiji software
(Schindelin et al., 2012) to obtain three mosaics of 3886� 3848 pixels of
complete sections for every optic nerve. Quantitative evaluation of the
mosaics was performed with AxonSeg (Zaimi et al., 2016), using a single
set of segmentation parameters for both control and experimental con-
ditions. We obtained total axon count, axon diameter, and axonþmyelin
diameter. From these metrics and total optic nerve area, we also obtained
axon density, axon volume fraction (AVF), myelin thickness, g-ratio, and
myelin volume fraction (MVF). The complicated architectural disposition
of axons in the optic chiasm, and the difficulty to obtain sections oriented
orthogonally to both axon bundles, precluded direct quantitative evalu-
ation of this region. We could not find a single set of parameters for
automatic segmentation of axons that produced reliable estimations for
the two axonal populations simultaneously, particularly in the injured
condition. To overcome this problem, and given that in rat brains nearly
all axons from each optic nerve cross the midline (Jeffery and Erskine,
2005), estimations of the two axonal populations in the chiasm were
done indirectly, by referring to the corresponding optic nerve
quantifications.

2.5. Data availability

All raw dMRI, as well as all photomicrographs and corresponding
automatic segmentations, are available in the White Matter Microscopy
Database (https://osf.io/yp4qg/) (Cohen-Adad et al., 2017). Further
details are available in the accompanying Data in Brief article.

2.6. Statistical analyses

Manually-drawn ROIs were delineated at the level of each optic nerve
and at the center of the chiasm. Optic nerve ROIs were 229 � 103 voxels
in size, whereas chiasm ROIs had 27 � 2 voxels. For each ROI, we
calculated the mean and standard deviation of each of the metrics pro-
vided by the three multi–fiber dMRI reconstruction methods. For voxels
in optic nerves with more than one fiber bundle (identified more
frequently in injured nerves), we used only the metrics for the bundle
with the largest AFD (CSD) and α (MRDS and DIAMOND) in the com-
putations. For voxels in the chiasm, the metrics for the obtained bundles
were identified as intact and injured based on their principal diffusion
orientation with respect to the corresponding optic nerve. To perform
this clustering, we used orientations of bundles with the largest AFD and
α (up to three) in the ROI to compute the centroid of orientations of the
bundles using the k-means method (k ¼ 2). These centroids were then
used to discriminate between intact bundle metrics and injured bundle
metrics in each voxel. Finally, the mean and standard deviation of
diffusion metrics were computed for each bundle.

Given the histology-based values and the metrics obtained from the
dMRI multi–fiber methods, the Pearson correlation coefficient was
computed for each histology/dMRI pair. In nerves, this computation was
straightforward: the histology-based values in one nerve were assigned to
the dMRI descriptor values corresponding to the same nerve. This was
done for all rats, giving a total of 30 points (15 rats� 2 nerves) that were
used to calculate the Pearson correlation coefficient. The corresponding
p-values were computed using permutation testing with 10,000 permu-
tations to create the null hypothesis distribution. For the chiasm, a
similar procedure was used, but because no quantitative histological
information was obtained for the chiasm, the dMRImetric values for each
crossing bundles were assigned to the histology-based values for the
corresponding nerve. For voxel-wise metrics, where no bundle-specific
information exists, the dMRI descriptors were correlated to the mean
of the histology-based values of both nerves.
4

2.6.1. Bootstrap aggregating for sensitivity evaluation
To study the sensitivity of the provided dMRI descriptors to the

reduction of volumes in the data, as well as to characterize the statistical
performance of the dMRI models when exposed to a large set of experi-
ments, we generated subsets of the data with replacement using the
Bootstrap Aggregating Method (BAM; also known as Bagging) (Breiman,
1996). BAM allows the estimation of the average quality of the dMRI
methodologies for a large number of experiments when only a few
samples are available. We created 100 samples of reduced dMRI data for
five cases, each one with 30, 40, 50, 60 or 70 vol per shell, for which the
corresponding gradients are evenly distributed in the half sphere. CSD,
MRDS and DIAMOND models were fitted to these data subsets and the
statistical analyses described above were performed with the resulting
dMRI descriptors. By simulating a large collection of data sets with the
BAM procedure we were able to evaluate the quality of the results in
clinically-viable settings (i.e., for a reduced number of dMRI
measurements).

3. Results

Injured optic nerves showed marked atrophy when compared to the
intact optic nerves (Fig. 2a and e). Evaluation of intact optic nerves using
light microscopy revealed that the distribution of axons throughout the
optic nerve is homogeneous with fibers grouped into coalescent fascicles
bounded by glial processes conveying capillary blood vessels (Fig. 2b).
Automatic segmentation of axons in the intact nerve shows that most
axons have diameters in the range of one micron, with an average myelin
thickness of 0.34 μm(Figs. 2 and 4, and Supplementary Fig. 2). Injured
optic nerves showed an abnormal microstructure (Fig. 2f) involving
axons and surrounding glial elements. High magnification views (Fig. 2f)
show a marked reduction of axonal density and the presence of dense,
retracted axons. This was reflected in the quantification of the number of
axons. Thickness of myelin sheaths, however, tended to be larger in the
injured nerves, likely due to the expected separation of individual myelin
layers and intra-myelin inclusions, as depicted by electron microscopic
observation (Fig. 7 and Supplementary Fig. 2). Hypertrophic glial cell
processes and sparse phagocytes bearing a foamy cytoplasm are
commonly observed in the injured optic nerve (Fig. 2f). Thus, the
decrease in the number of myelinated axons interspersed with hyper-
trophic glial processes and interstitial macrophage infiltration contrib-
utes to the overall atrophic appearance noted in the injured optic nerve.
The number of axons was considerably lower as compared to intact
nerves, reducing axonal density by around 50%, which translated into
reductions of axon and myelin volume fractions (Fig. 4a and b). The
remaining structurally viable axons in the injured nerves tended to have
slightly larger calibers, with a proportionally larger loss of small-caliber
axons (Fig. 7e). Sagittal sections of the intact optic chiasm showed two
distinct, interdigitating axonal populations (Fig. 2d). Comparable sec-
tions from experimental animals showed one normally-appearing axonal
population intermingled with collections of collapsed axons (Fig. 2h).

Ex vivo dMRI of the optic nerves and chiasm provided a high level of
detail in both structures (Fig. 3). All three dMRI analysis methods were
able to convey relevant information regarding the intact and injured
nerves and chiasm (Fig. 4c–h). The CSD-derived FODs within the intact
optic nerves showed a single fiber population and had large amplitudes.
At the level of the intact chiasm, two fiber populations crossing nearly
orthogonally can be seen. Both multi-tensor methods showed single-fiber
populations with very high anisotropy in intact optic nerves, and two
high-anisotropy tensors within the optic chiasms; those derived from the
DIAMONDmodel were more anisotropic than those derived from MRDS.
Injured optic nerves showed reduced amplitude of FODs and the presence
of spurious peaks, as well as reduced anisotropy in multi-tensor models.
Injured chiasms showed considerable amplitude reduction of the lobes of
the FODs corresponding to the injured axonal population, whereas MRDS
and DIAMOND showed reduced anisotropy or reduced compartment
fraction of the tensors related to the injured bundle. Statistical pair-wise

https://osf.io/yp4qg/


Fig. 2. Histological evaluation of intact and injured optic nerves. As compared with the intact optic nerve (a), the injured nerve (e) shows considerable atrophy at low
magnification. Higher magnification shows tightly-packed axons with dense, circular myelin sheaths in the intact nerve (b). Interstitial glial cells (arrows) and their
processes (arrow heads), some of them encircling capillaries (asterisks), are observed. The damaged optic nerve (f) shows a dramatic reduction of normally-appearing
axons, which are substituted by hyperchromatic axons with shrunken axoplasm and retracted myelin sheaths. Glial processes (arrow heads) are seemingly increased in
size and number, and foamy phagocytes (dashed) are also frequent. Axon segmentation shows a marked decrease of axons in the injured nerve (g) compared to the
intact optic nerve (c). The intact optic chiasm (d) shows two axonal populations running in different directions (yellow curved arrows and stars). In the injured optic
chiasm (h) there are numerous clusters of altered axons that resemble those in panel (f). Notably, clusters of altered axons (blue stars) alternate with axons of normal
appearance, most of them obliquely sectioned (yellow curved arrows).

Fig. 3. Qualitative evaluation. Analysis of a control
specimen (top) shows both optic nerves having single-
fiber FODs with large amplitude, as evaluated through
CSD; these single-fiber FODs correspond to high
anisotropy of single tensors for both multi-tensor
models (MRDS and DIAMOND). The intact optic
chiasm shows two fiber populations with nearly
identical diffusion properties crossing the midline.
Unilateral retinal ischemia (bottom) induced a low
amplitude of FODs and low anisotropy in the injured
nerve, whereas the optic chiasm shows a low ampli-
tude of the FODs corresponding to the injured nerve
(those from the intact nerve have a high amplitude),
and low anisotropy (MRDS) and low volume fraction
(DIAMOND). The dotted green and white regions are
enlarged and framed in the same colors.
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comparisons for the different metrics derived from the three methods are
available in the accompanying Data in Brief article.

Metrics derived from the same dMRI data sets using three different
5

analytical methods showed tight correlations with quantitative histology
of the optic nerves and chiasm (Fig. 5; for an interactive version, visit
https://doi.org/10.5281/zenodo.2574201). For CSD, the highest

https://doi.org/10.5281/zenodo.2574201


Fig. 4. Main parameters derived from quantitative histology and dMRI of optic nerves and chiasm. The number of axons is drastically reduced in the injured optic
nerves (a), which is accompanied by a reduction of myelin volume fraction (b). The three multi–fiber dMRI metrics clearly differentiate intact from injured nerves as
reduced AFD (CSD), and FA (MRDS and DIAMOND) (panels c–e). In the chiasm, both multi-tensor models showed reduced FA for the affected fiber bundle (g, h). CSD
showed a reduction of AFD for the injured bundle in the chiasm and, unexpectedly, increased AFD of the intact bundle (f). Detailed histology and dMRI metrics are
provided in the accompanying Data in Brief article.
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positive correlations were observed for AFD and peak AFD and axon
density, AVF, MVF and g-ratio, Notably, negative correlations were seen
between these two metrics and axon diameter and myelin thickness. This
pattern was similar for dMRI data derived from intact and injured optic
nerves and chiasm, albeit correlations were slightly lower in the chiasm.
FOD dispersion did not correlate with any of the histological parameters
in the optic nerves, but did so in the chiasm (with a similar pattern to the
one previously described). FOD complexity correlated negatively with
axon density, AVF, MVF and g-ratio, and positively with axon diameter
and myelin thickness in the nerves, but not in the chiasm, where it had
moderate positive correlations with AVF, MVF, g-ratio and axon diam-
eter. Of note, FOD complexity is very low in intact optic nerves, and high
in the intact chiasm, and the opposite in damaged structures (visualized
in Fig. 3). The tensors derived fromMRDS showed clear correlations with
histology in the optic nerves, namely positive for FA, MD, λk, and
compartment size (α), with axon density, AVF, MVF and g-ratio; and
negative for axon diameter and myelin thickness. λ? showed the opposite
direction of correlations with the same histological parameters. Similar
yet slightly lower correlations were seen for DIAMOND, which also
captured significant variance of histology-derived metrics in the het-
erogeneity indices of λk and λ?(λkHEI and λ?HEI , respectivey). Per-bundle
tensors identified by MRDS in the chiasm showed correlations with the
histological characteristics of the corresponding optic nerves, particu-
larly for FA, λ?, λkand α, but MD did not show significant correlations
with histology. Similar to MRDS, per-bundle FA, λkand α derived from
DIAMOND correlated with histology; contrary to the correlations seen in
the optic nerves, heterogeneity indices did not correlate with histology.

Fig. 6 shows the positive correlations between axonal density and
MVF with AFD and FA derived from dMRI for the optic nerves and
chiasm. A continuum of histological alterations is observed for the con-
trol, intact and injured nerves that is closely mirrored by diffusion met-
rics. Segmentation of the FODs in CSD, and the estimation of two tensors
by MRDS and DIAMOND at the level of the chiasm allows the estimation
of dMRImetrics for each axonal population (i.e., fixel-wise analysis). This
resulted in strong correlations that mimic those seen in the single-fiber
population architecture of the optic nerves. Of note, while experi-
mental animals showed the expected difference of AFD between the two
bundles in the chiasm, the intact bundle showed values that were
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significantly higher than those seen in control animals (Figs. 4f and 6b).
Negative correlations were found between axon diameter and myelin
thickness, and diffusion metrics such as AFD and FA (Fig. 7). Group-wise
correlations were weaker than those obtained from the full data set.
MRDS showed a significant correlation between FA and axon density and
myelin volume fraction in the damaged nerves and corresponding
portion of the chiasm (Fig. 6,e-h). In general, the intact and control
nerves and chiasm did not show correlations with histological features.
When correlations were made controlling for the Group factor (i.e.,
subtracting the group’s mean from the variables being correlated), the
overall pattern of correlations (Supplementary Fig. 3) was similar to that
obtained from correlations using the full data set (Fig. 5), albeit with
smaller effects and statistical significance. While in the optic nerves the
three dMRI methods analyzed showed significant correlations with his-
tology, significant correlations were more abundant for the two multi-
tensor models than CSD. In particular, axon density of the nerves was
significantly correlated with AFD and FA derived from both multi-tensor
models; axon density of the chiasm was correlated with FA, but not with
AFD (Supplementary Fig. 4).

The results of the BAM analysis, shown in Fig. 8, display the robust-
ness of the correlations between dMRI descriptors and metrics computed
from histology when the number of DWI acquisitions is reduced. These
results corroborate that many of the dMRI descriptors are sufficiently
robust to describe histological features, even when the number of vol-
umes is reduced considerably (from 80 to 30 DWI volumes per shell). The
most reliable estimators (i.e., those with consistent correlation co-
efficients obtained from different numbers of DWI volumes) for nerves
and chiasm included CSD’s AFD and peak AFD, MRDS’s FA, λ? and α, and
DIAMOND’s FA and α.

4. Discussion

This work provides direct evidence of the ability of three different
dMRI processing methods to capture relevant microstructural informa-
tion related to white matter damage in fiber crossing regions. We
extended the well-known model of unilateral retinal ischemia (Adachi
et al., 1996; Song et al., 2003) to induce Wallerian degeneration of the
optic nerve emerging from the affected eye, providing an ideal



Fig. 5. Correlation matrices between histological features (rows) and dMRI-derived metrics (columns) for the three dMRI methods used. In the optic neves, AFD, AFD
peak, λk, FA, MD and compartment size (α) show positive correlations with axon density, axon volume fraction, myelin volume fraction (expanded in Fig. 6), and g-
ratio, and negative correlations with axon diameter and myelin thickness (see Fig. 7). This correlation pattern is similar for the corresponding bundles within the
chiasm. The two multi-tensor models showed similar correlations with histology in the optic nerves for λk, λ?, FA and α. Axial and radial heterogeneity (λkHEI and λ?HEI ,
respectively) of nerves, but not chiasm, correlated with histology. Contrary to MRDS, DIAMOND’s λk did not correlate with histology in the chiasm, whereas MD did.
Each cell shows Pearson’s correlation coefficient, with bold typeface for p < 0:05. For a full list of p-values, see Supplementary Fig. 1.
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opportunity to evaluate the optic chiasm, where the degenerated axons
cross their intact counterparts emanating from the contralateral (unaf-
fected) eye. The known anatomy of the visual pathway and the discrete
nature of the induced white matter damage allowed us to evaluate the
extent to which quantitative parameters derived from advanced dMRI
models relate to tissue characteristics.

Axonal degeneration produces morphological changes that are
readily followed by dMRI in regions where a single fiber population
exists (Beaulieu et al., 1996; Stanisz et al., 2001). The tensor model is
able to distinguish the acute and chronic stages of Wallerian degenera-
tion, characterized by an initial fragmentation of axons, followed by
myelin degradation and glial infiltration (Song et al., 2003; Concha et al.,
2006; Liu et al., 2013). The non-invasive identification and staging of this
pathological phenomenon is invaluable in clinical and research settings.
However, such a feat is not trivial in regions with complicated fiber ar-
chitecture, such as in voxels containing crossing, fanning, kissing or
incoherently-organized fibers (Tournier et al., 2011). With most of the
human white matter containing such complex configurations (Jeurissen
et al., 2013), the need to disentangle fiber populations and derive their
characteristics independently is obvious. Yet, in addition to their sensi-
tivity, metrics derived from dMRI should be easily relatable to biological
features of the kind a neuro-pathologist may describe.
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In the optic nerves, we found the expected morphological changes
that characterize the chronic phase of Wallerian degeneration, with the
most striking features being a profound loss of axonal density, severe
degradation of myelin, and gross atrophy (Fig. 2). The single tensor
model also showed the expected reduction of diffusion anisotropy at the
expense of increased λ?. The morphology of the FODs in the damaged
optic nerves was abnormal, with an overall reduction of their amplitude,
and the inclusion of small peaks oriented perpendicular to the nerves
(Fig. 3). The three dMRI analysis methods correctly identified the two
fiber populations contained in the intact optic chiasm. Notably, degen-
eration of one of the fiber populations in this crossing region was evi-
denced by a reduction of the amplitude of the corresponding lobe in the
FOD (i.e., reduced AFD). The tensor identified as belonging to the
degenerated fibers showed reduced FA and volume fraction, and
increased heterogeneity and λ?, analogous to the injured optic nerves.

Strong correlations were found between dMRI metrics and histolog-
ical features. The most relevant is the positive association between
axonal density and per-bundle FA and AFD, while complexity, dispersion
and compartment sizes (α) also showed correlations with histology.
Importantly, these correlations are evident at the level of the optic nerves
and chiasm (Fig. 5). Thus, when multi–fiber reconstructions are per-
formed, these two metrics can be interpreted in a similar fashion in



Fig. 6. Correlations between dMRI metrics and quantitative histology. Strong positive correlations were observed for axon density and myelin volume fraction with
AFD and FA in optic nerves and chiasm. The dMRI measurements are shown as mean (circles) and standard deviation (bars). Black lines represent the linear regression
of all data points; group-wise linear regressions are shown in their respective colors. p< 0.05 in solid lines; dashed for p> 0.05.
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Fig. 7. Correlations between dMRI metrics and quantitative histology. Negative correlations were observed for AFD and FA with average axon diameter (a–d). These
correlations appear to be driven by preferential loss of small-caliber axons, as evidenced by the histogram resulting from the concatenation of all axons in all
photomicrograph mosaics (e). Myelin thickness also correlated negatively with AFD and FA in both optic nerves and chiasm (f–i). This negative correlation is likely
artifactual, resulting from the overestimation of myelin thickness when sheaths are separated (arrows in [j] and [k]), a phenomenon that is exaggerated in injured
nerves (k). Arrowheads in (k) show degenerated axons with electro-dense cytoplasm. Panels (j) and (k) are exemplary survey electron micrographs of optic nerves at
higher magnification than that used for automatic segmentation of axons. In the intact optic nerve (j) most axons bare compact myelin envelopes. Myelin splitting is
occasionally observed in the normal optic nerve (arrows), but it occurs more extensively and frequently in the injured optic nerve (k), which yields an increased overall
myelin thickness. FA shown in panels (c), (d), (h), and (i), is derived from MRDS; similar correlations are observed for DIAMOND (not shown). Black lines represent
the linear regression of all data points; group-wise linear regressions are shown in their respective colors. p< 0.05 in solid lines; dashed for p> 0.05.
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regions of one or more axonal populations. Other metrics should be
analyzed with caution. FOD complexity, for example, is very low in intact
optic nerves and high in the intact optic chiasm, but in the presence of
degenerated axons, this pattern is reversed. This finding is in line with
expectations and the appearance of resulting FODs (Fig. 3). However, we
unexpectedly found that myelin thickness and axon diameter correlated
negatively with the AFD and FA of the nerves and chiasm (Fig. 7). Close
examination using electron microscopy revealed that myelin thickness
was overestimated by the method used for automatic segmentation
because of the abundance of intra-myelin inclusions and fraying of
myelin sheaths (Fig. 7-j,k and Supplementary Fig. 2). Some intramyelin
inclusions and myelin sheath separations are even seen in intact optic
nerves (Fig. 2), which are expected given the relatively long time be-
tween tissue fixation and preparation for histology (Peters, 1970; Huk-
kanen and R€oytt€a, 1987). However, the degree of myelin abnormalities is
considerably greater in the injured nerves. The artifactual negative cor-
relation between myelin thickness and AFD/FA is corrected when ac-
counting for axonal density, in the form of myelin volume fraction, which
correlated positively with AFD, FA, and MD (Fig. 5). Degenerated nerves
showed that the small fraction of surviving axons had, on average, a
slightly larger diameter than those of intact nerves. Inspection of the
histogram of axonal diameters across all the samples revealed that large
caliber axons were preferentially spared after injury (Fig. 7e). These
large-caliber axons would allow greater diffusion perpendicular to their
long axis, thereby reducing FA, albeit this effect likely explains much less
9

of the reductions of FA and AFD than the loss of axons and increased
extra-axonal space. The different vulnerability of axons as a function of
their diameter has been reported in post-mortem studies of spinal cords
of patients with multiple sclerosis, although the mechanisms that drive
this phenomenon are unclear (DeLuca et al., 2004). The contribution of
very small caliber axons (< 0.2 μm) to the correlations presented herein
is also difficult to predict, since those axons cannot be resolved with
optical imaging (Innocenti et al., 2013). Glial infiltration was observed in
the degenerated nerves and chiasm. It has been reported that glial scars
formed after spinal cord injury can create anisotropic structures
perpendicular to axons, thereby modulating diffusion anisotropy in
degenerated white matter bundles (Schwartz et al., 2005). We cannot
comment on the influence of glial cells on dMRI and measured anisot-
ropy, as we did not characterize the spatial organization of these cells. In
the chiasm, AFD of the intact fiber bundle of experimental animals was
larger than that of control animals (Fig. 6b), likely due to the use of a
fixed response function in the CSD methodology. The signal from the
injured bundle could not be fully represented by its corresponding FOD
lobe, causing an increase in the lobe corresponding to the intact lobe in
order to minimize the error in the model. This was corroborated using
synthetic data and presented in Supplementary Fig. 5. Despite the ability
of CSD to disentangle the intact and injured axonal populations, careful
interpretation of absolute values of AFD is thus warranted in future
studies using such metric.

The data sets in this study used 80 directions for diffusion sensitiza-



Fig. 8. Robustness of correlations with respect to the number of volumes in the data set. Out of the 160 DWI volumes available in the original data set (80 DWI
directions in two shells), we evaluated correlations with histology using a subset of n ¼ ½30 : 10 : 70� randomly selected volumes per shell. Shown here are only
correlations with axon density. The top panel shows stability of correlation coefficients as a function of number of DWI volumes as mean values (horizontal lines) and
standard deviations (vertical lines). Most correlations are very stable regardless of the number of volumes used (n � 30/shell). Exemplary bagging results identified as
i, ii and iii in (a), (e), and (i), respectively, are expanded in the bottom panel, where the overlapping semi-transparent lines indicate the resulting linear regression for a
particular bagging realization.
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tion each in two b > 0 s/mm2 shells. Even with rapid acquisition tech-
niques, such as echo-planar imaging, the acquisition time would be too
long for most clinical settings. We therefore tested if the correlations
between dMRI metrics and histological features are viable with small
data sets. Our results (Fig. 8) indicate that dMRI descriptors provide
useful correlations about the healthy and damaged microstructure fea-
tures, even with a reduced set of acquisitions. The majority of correla-
tions we identified with the complete data set are also observed when
using only 30 acquisitions per shell, which is attainable for clinical
purposes. Our results indicate that the proposed animal model is useful to
characterize the performance of methods for dMRI analysis. This bio-
logical model provides an excellent opportunity to evaluate the perfor-
mance of methodologies that yield additional descriptors of tissue, such
as intracellular volume fractions and axon diameter estimations (Assaf
et al., 2008; Alexander et al., 2010; Fieremans et al., 2011; Zhang et al.,
2012; Panagiotaki et al., 2012; Dyrby et al., 2013), and alternative image
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acquisition approaches (Mitra, 1995; Shemesh et al., 2016; Yang et al.,
2018).

Ex vivo imaging provides the opportunity to acquire very high reso-
lution images through long acquisition times, with substantial minimi-
zation of artifacts such as motion and magnetic susceptibility. However,
there are crucial differences between ex vivo and in vivo tissue that can
potentially confound the interpretation of dMRI. First, blood vessels no
longer present flow; instead, they are occupied by the fixative solution
used, and the fast and directional motion of blood is replaced by a large
pool of diffusing water molecules. Given the relatively large caliber of
vessels (as compared to axons, and in the context of the effective diffu-
sion times used in this study), this water pool likely shows fast and
isotropic diffusion. Although multi-tissue CSD attempts to capture a
freely-diffusing compartment (Jeurissen et al., 2014), and DIAMOND
estimates the isotropic fraction fiso, MRDS does not not explicitly search
for this pool. Second, temperature directly affects dMRI. Temperature
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variations modulate diffusivity, which would confound anisotropy
measures, as each diffusion-weighted volume would be differentially
affected. In this study, room temperature was kept at 21 �C, thus mini-
mizing this confound. Nonetheless, tissue temperature is lower than in
vivo, thus reducing overall diffusivity, but not anisotropy (D’Arceuil
et al., 2007). It is therefore recommended that the selected b values for ex
vivo imaging be three to four times higher than those typically selected
for in vivo applications (Dyrby et al., 2011). The b values used here (2000
and 2500 s/mm2) can thus be considered low. Despite this level of
diffusion sensitization, we showed that three different dMRI analysis
methods were able to precisely identify the crossing fibers in the chiasm,
and accurately identify diffusion alterations related to axonal degenera-
tion. This is encouraging, since most clinically-available scanners are
equipped with low-amplitude gradient systems that would require long
echo times to achieve high b values, negatively impacting signal-to-noise
ratio (Jones et al., 2018). Lastly, tissue shrinks after perfusion fixation,
and even more so after preparation for microscopy, mainly due to a
reduction of the extra-cellular space (Dyrby et al., 2018). Thus, contri-
butions to the dMRI signal from intra- and extra-axonal compartments
may differ from what is appreciated through light and electron
microscopy.

Our study lacks direct quantification of histological features in the
chiasm, which were estimated based on the average of features obtained
in the optic nerves. Given the intricate arrangement of axons within the
chiasm (Colello and Guillery, 1998), automatic segmentation of axons
was either inadequate or biased towards a particular population. At-
tempts to quantify axons were made from sections in the sagittal (as re-
ported herein), coronal, and horizontal orientations, yet they all showed
such heterogeneity of axonal profiles that automatic quantification
proved unreliable. Our approach to infer chiasm tissue characteristics
based on those measured in the optic nerves relies on the fact that most
retinal axons decussate in rodents (Jeffery and Erskine, 2005). Other
forms of morphological analysis of this structure, such as those derived
from large field-of-view, three-dimensional electron microscopy (Denk
and Horstmann, 2004; Abdollahzadeh et al., 2018; Pichat et al., 2018;
Lee et al., 2019) or optical coherence tomography (Lefebvre et al., 2018),
should provide more accurate estimations of tissue properties, including
many that cannot be resolved from two-dimensional sections, such as
axon tortuosity and dispersion, and spatial arrangement of glial cells,
vessels, and other structures that contribute to modulation of water
diffusion. Also, experimental logistics of our study resulted in brains
being imaged at different times with respect to euthanasia, and speci-
mens processed in different batches. While we did not find any signifi-
cant correlation between fixation time and dMRI or histology
evaluations, histological processing of specimens in different batches
may have potentially introduced biases in the estimation of quantitative
histology (e.g., differences in axonal density of optic nerves between
control animals and intact nerves in the experimental group; Fig. 6).
Finally, the histological features studied are highly inter-dependent. For
example, severe axonal loss induced by retinal ischemia is also respon-
sible for overall myelin loss in the chronic stage of degeneration. Future
studies of different forms (and stages) of tissue damage, and the use of
dMRI methods that explicitly model the different constituents of white
matter, could identify specific tissue contributions to dMRI
abnormalities.

Several studies have used histological methods to validate fiber ori-
entations derived from dMRI (Wang et al., 2014; Sierra et al., 2015; Khan
et al., 2015; Salo et al., 2018; Chang et al., 2017; Lefebvre et al., 2018),
showing agreement between the two, even in regions of fiber crossings
(Leergaard et al., 2010; Budde and Annese, 2013; Schilling et al., 2016;
Axer et al., 2016). Yet, to be useful for clinical and research purposes,
per-bundle diffusion characteristics are needed, along with their
respective validation with respect to a gold standard, as has been largely
achieved in the case of single-fiber regions (Concha, 2014; Alexander
et al., 2019). Our work provides grounds for proper interpretation of
diffusion abnormalities in fiber crossing regions. The three dMRI
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methods validated here were chosen because they have relatively lenient
acquisition requirements, and provide metrics that are intuitively related
to tissue characteristics. Our results show that these dMRI methods
provide reliable indicators of white matter damage in regions with one or
more axonal populations, even at relatively low b values and few dMRI
volumes. However, correlations between dMRI metrics and histological
features were weak or non-existent for intact tissue (Fig. 6). Caution is
therefore warranted when attempting to infer specific tissue parameters
from dMRI in control populations.

This work approaches diffusion metrics as biomarkers of broad
characteristics of tissue (as opposed to their use in biophysical models
that extract specific tissue parameters) (Jespersen, 2018), and in-
vestigates how much biologically-relevant information a specific dMRI
representation captures (Novikov et al., 2018). Such an approach favors
sensitivity over specificity, but may provide more tangible metrics that
clinicians and researchers can use to diagnose and monitor various
neurodegenerative disorders. At the same time, histological validations
of dMRI metrics will minimize their overinterpretation and misinter-
pretation, which have unfortunately become all too common (Jones
et al., 2013; Novikov et al., 2018). Accurate interpretation of dMRI, used
in combination with other methods, will further improve the yield of
detailed information on tissue microstructure in a non-invasive fashion
(Cercignani and Bouyagoub, 2018). As new forms of analysis of the dMRI
signal are developed, they should undergo rigorous validation through
numerical simulations, physical phantoms and, ultimately, histological
correspondence. To this end, we provide all the dMRI and histological
data through the White Matter Microscopy Database (Cohen-Adad et al.,
2017).
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